2D Materials paper: Laser printing of Graphene Surfaces for Bone Tissue Regeneration

Graphene and Graphene oxide (GO) are capable of inducing stem cells differentiation into bone tissue with variable efficacy depending on reductive state of the material. Thus, modulation of osteogenic process and of bone mineral density distribution is theoretically possible by controlling the GO oxidative state. In this study, we laser-printed GO surfaces in order to obtain both a local photo-thermal GO reduction and the formation of nano-wrinkles along precise geometric pattern. Initially, after cells adhered on the surface, stem cells migrated and accumulated on the reduced and wrinkled surface. When the local density of the stem cells on the reduced stripes was high, cells started to proliferate and occupy the oxidized/flat area. The designed surfaces morphology guided stem cell orientation and the reduction accelerated differentiation. Furthermore the reduced sharp nano-wrinkles were able to enhance the GO antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA), common cause of prosthetic joints infections. This strategy can offer a revolution in present and future trends of scaffolds design for regenerative medicine.

Palmieri, V., Barba, M., Pietro, L.D., Gentilini, S., Braidotti, M.C., Ciancico, C., Bugli, F., Ciasca, G., Larciprete, R., Lattanzi, W., Sanguinetti, M., Spirito, M.D., Conti, C., Papi, M. (2017) “Reduction and shaping of graphene-oxide by laser-printing for controlled bone tissue regeneration and bacterial killing”2D Materials 

Observation of replica symmetry breaking in disordered nonlinear wave propagation

A landmark of statistical mechanics, spin-glass theory describes critical phenomena in disordered systems that range from condensed matter to biophysics and social dynamics. The most fascinating concept is the breaking of replica symmetry: identical copies of the randomly interacting system that manifest completely different dynamics. Replica symmetry breaking has been predicted in nonlinear wave propagation, including Bose-Einstein condensates and optics, but it has never been observed. Here, we report the experimental evidence of replica symmetry breaking in optical wave propagation, a phenomenon that emerges from the interplay of disorder and nonlinearity. When mode interaction dominates light dynamics in a disordered optical waveguide, different experimental realizations are found to have an anomalous overlap intensity distribution that signals a transition to an optical glassy phase. The findings demonstrate that nonlinear propagation can manifest features typical of spin-glasses and provide a novel platform for testing so-far unexplored fundamental physical theories for complex systems.

Davide Pierangeli, Andrea Tavani, Fabrizio Di Mei, Aharon J. Agranat, Claudio Conti, Eugenio Del Re, Nature Communications 8:1501 (2017)

Lasing on nonlinear localized waves in curved geometry

The use of geometrical constraints exposes many new perspectives in photonics and in fundamental studies of nonlinear waves. By implementing surface structures in vertical cavity surface emitting lasers as manifolds for curved space, we experimentally study the impacts of geometrical constraints on nonlinear wave localization. We observe localized waves pinned to the maximal curvature in an elliptical-ring, and confirm the reduction in the localization length of waves by measuring near and far field patterns, as well as the corresponding energy-angle dispersion relation. Theoretically, analyses based on a dissipative model with a parabola curve give good agreement remarkably to experimental measurement on the reduction in the localization length. The introduction of curved geometry allows to control and design lasing modes in the nonlinear regime.

Kou-Bin Hong, Chun-Yan Lin, Tsu-Chi Chang, Wei-Hsuan Liang, Ying-Yu Lai, Chien-Ming Wu, You-Lin Chuang, Tien-Chang Lu, Claudio Conti, and Ray-Kuang Lee in Optics Express 25, 29068 (2017)

Squeezing of a nonlocal photon fluid

Quantum fluids of light are an emerging tool employed in quantum many-body physics. Their amazing properties and versatility allow using them in a wide variety of fields including gravitation, quantum information, and simulation. However the implications of the quantum nature of light in nonlinear optical propagation are still missing many features. We theoretically predict classical spontaneous squeezing of a photon fluid in a nonlocal nonlinear medium. By using the so called Gamow vectors, we show that the quadratures of a coherent state get squeezed and that a maximal squeezing power exists. Our analysis holds true for temporal and spatial optical propagation in a highly nonlocal regime. These results lead to advances in the quantum photon fluids research and may inspire applications in fields like metrology and analogs of quantum gravity.

M.C.Braidotti, A. Mecozzi, C. Conti, Phys. Rev. A 96, 043823 (2017)