2D Materials paper: Laser printing of Graphene Surfaces for Bone Tissue Regeneration

Graphene and Graphene oxide (GO) are capable of inducing stem cells differentiation into bone tissue with variable efficacy depending on reductive state of the material. Thus, modulation of osteogenic process and of bone mineral density distribution is theoretically possible by controlling the GO oxidative state. In this study, we laser-printed GO surfaces in order to obtain both a local photo-thermal GO reduction and the formation of nano-wrinkles along precise geometric pattern. Initially, after cells adhered on the surface, stem cells migrated and accumulated on the reduced and wrinkled surface. When the local density of the stem cells on the reduced stripes was high, cells started to proliferate and occupy the oxidized/flat area. The designed surfaces morphology guided stem cell orientation and the reduction accelerated differentiation. Furthermore the reduced sharp nano-wrinkles were able to enhance the GO antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA), common cause of prosthetic joints infections. This strategy can offer a revolution in present and future trends of scaffolds design for regenerative medicine.

Palmieri, V., Barba, M., Pietro, L.D., Gentilini, S., Braidotti, M.C., Ciancico, C., Bugli, F., Ciasca, G., Larciprete, R., Lattanzi, W., Sanguinetti, M., Spirito, M.D., Conti, C., Papi, M. (2017) “Reduction and shaping of graphene-oxide by laser-printing for controlled bone tissue regeneration and bacterial killing”2D Materials 

Designing Beauty: The Art of Cellular Automata

A new book on the Game of Life, and specifically on the Art of the Game of Life has been published by Springer. Edited by A. Adamatzky and Genaro J. Martinez, the book is part of the Series on Emergence, Complexity and Computation with artistic representations from simple mathematical models at the edge of physics and biology. The book contains a chapter by C. Conti on the Enlightened Game of Life.

 

The graphene oxide contradictory effects against human pathogen

Valentina Palmieri et al review the hundreds of papers about the action of graphene against bacteria.

Standing out as the new wonder bidimensional material, graphene oxide (GO) has aroused an exceptional interest in biomedical research by holding promise for being the antibacterial of future. First, GO possesses a specific interaction with microorganisms combined with a mild toxicity for human cells. Additionally, its antibacterial action seems to be directed to multiple targets in pathogens, causing both membranes mechanical injury and oxidative stress. Lastly, compared to other carbon materials, GO has easy and low-cost processing and is environmentfriendly.
This remarkable specificity and multi-targeting antibacterial activity come at a time when antibiotic resistance represents the major health challenge. Unfortunately, a comprehensive framework to understand how to effectively utilize this material against microorganisms is still lacking. In the last decade, several groups tried to define the mechanisms of interaction between GO flakes and pathogens but conflicting results have been reported. This review is focused on all the contradictions of GO antimicrobial properties in solution. Flake size, incubation protocol,
time of exposure and species considered are examples of factors influencing results. These parameters will be summarized and analyzed with the aim of defining the causes of contradictions, to allow fast GO clinical application.

Antibacterial action of graphene oxide, web and press release

The image shows the cutting of bacteria by graphene oxide flakes.

nazione2016

Some Web release

http://www.graphene-info.com/graphene-oxide-helps-creating-antibacterial-cloack

http://lucbourne.scienceblog.com/74/treating-biofilms-to-an-antimicrobial-cloak/

http://www.pubfacts.com/detail/27710143/The-future-development-of-bacteria-fighting-medical-devices-the-role-of-graphene-oxide

More press and web release (.pdf download)