Our Ising machine in Laser Focus World

August 2019 issue of Laser Focus World reports on our Ising machine in a featured article

Researchers have built the largest photonic Ising machine to date – an optical processor for solving difficult optimization problems by modelin interacting spins via a spatially varying light field

Other web and press release on our Ising machine

Le Scienze : la piu’ grande macchina di calcolo con la luce

Repubblica : la macchina che risolve i problemi alla velocita’ della luce

https://arstechnica.com/science/2019/06/expanding-and-focusing-beam-of-light-makes-parallel-computer/

See also

Super-Duper Ising machine

Super-Duper Ising Machine by a Single SLM

Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultra-fast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagnetic-like phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.

D. Pierangeli, G. Marcucci, C. Conti in ArXiv:1905.11548 and Phys. Rev. Lett. 122, 213902 (2019)

See also

Topological Photonics Inverse Problem by Machine Learning

Topological concepts open many new horizons for photonic devices, from integrated optics to lasers. The complexity of large scale topological devices asks for an effective solution of the inverse problem: how best to engineer the topology for a specific application? We introduce a novel machine learning approach to the topological inverse problem. We train a neural network system with the band structure of the Aubry-Andre-Harper model and then adopt the network for solving the inverse problem. Our application is able to identify the parameters of a complex topological insulator in order to obtain protected edge states at target frequencies. One challenging aspect is handling the multivalued branches of the direct problem and discarding unphysical solutions. We overcome this problem by adopting a self-consistent method to only select physically relevant solutions. We demonstrate our technique in a realistic topological laser design and by resorting to the widely available open-source TensorFlow library. Our results are general and scalable to thousands of topological components. This new inverse design technique based on machine learning potentially extends the applications of topological photonics, for example, to frequency combs, quantum sources, neuromorphic computing and metrology.

Pilozzi, Farrelly, Marcucci, Conti in ArXiv:1803.02875

Designing Beauty: The Art of Cellular Automata

A new book on the Game of Life, and specifically on the Art of the Game of Life has been published by Springer. Edited by A. Adamatzky and Genaro J. Martinez, the book is part of the Series on Emergence, Complexity and Computation with artistic representations from simple mathematical models at the edge of physics and biology. The book contains a chapter by C. Conti on the Enlightened Game of Life.

 

Physics without equations? (school/workshop at ROME!)

July 24 – August 4

People think that equations are not needed if we have a lot of data and the way to organize them… is this true?

Are equations useless for complex systems?

Are computers able to derive models for complex-systems more effectively than humans?

We are announcing the International School and Workshop in collaboration with the University of Washington in Rome!

Data-Driven Methods for Multi-Scale Physics and Complex Systems

An interdisciplinary initiative aimed at committing together different disciplines with the data-driven physics!