LSA Paper: Phase-matching-free parametric oscillators based on two-dimensional semiconductor

Optical parametric oscillators are widely used as pulsed and continuous-wave tunable sources for innumerable applications, such as quantum technologies, imaging, and biophysics. A key drawback is material dispersion, which imposes a phase-matching condition that generally entails a complex design and setup, thus hindering tunability and miniaturization. Here we show that the burden of phase-matching is surprisingly absent in parametric micro-resonators utilizing mono-layer transition-metal dichalcogenides as quadratic nonlinear materials. By the exact solution of nonlinear Maxwell equations and first-principle calculations of the semiconductor nonlinear response, we devise a
novel kind of phase-matching-free miniaturized parametric oscillator operating at conventional pump intensities. We find that different two-dimensional semiconductors yield degenerate and non-degenerate emission at various spectral regions due to doubly resonant mode excitation, which can be tuned by varying the incidence angle of the external pump laser. In addition, we show that high-frequency electrical modulation can be achieved by doping via electrical gating, which can be used to efficiently shift the threshold for parametric oscillation. Our results pave the way for the realization of novel ultra-fast tunable micron-sized sources of entangled photons—a key device underpinning any quantum protocol. Highly miniaturized optical parametric oscillators may also be employed in lab-on-chip technologies for biophysics, detection of environmental pollution and security.

A. Ciattoni, A. Marini, C. Rizza and C. Conti, Light: Science & Applications  7 (2018) 5

Plasmon-enhanced spin-orbit interaction of light in graphene

We develop a novel theoretical framework describing polariton-enhanced spin-orbit interaction of light on the surface of two-dimensional media. Starting from the integral formulation of electromagnetic scattering, we exploit the reduced dimensionality of the system to introduce a quantum-like formalism particularly suitable to fully take advantage of rotational invariance. Our description is closely related to that of a fictitious spin one quantum particle living in the atomically thin medium, whose orbital, spin and total angular momenta play a key role in the scattering process. Conservation of total angular momentum upon scattering enables to physically unveil the interaction between radiation and the two-dimensional material along with the detailed exchange processes among orbital and spin components. In addition, we specialize our model to doped extended graphene, finding such spin-orbit interaction to be dramatically enhanced by the excitation of surface plasmon polaritons propagating radially along the graphene sheet. We provide several examples of the enormous possibilities offered by plasmon-enhanced spin-orbit interaction of light including vortex generation, mixing, and engineering of tunable deep subwavelength arrays of optical traps in the near field. Our results hold great potential for the development of nano-scaled quantum active elements and logic gates for the manipulation of hyper-entangled photon states as well as for the design of artificial media imprinted by engineered photonic lattices tweezing cold atoms into the desired patterns.

A. Ciattoni, C. Rizza, H. W. H. Lee, C. Conti, A. Marini in ArXiv:1804.10533

2D Materials paper: Laser printing of Graphene Surfaces for Bone Tissue Regeneration

Graphene and Graphene oxide (GO) are capable of inducing stem cells differentiation into bone tissue with variable efficacy depending on reductive state of the material. Thus, modulation of osteogenic process and of bone mineral density distribution is theoretically possible by controlling the GO oxidative state. In this study, we laser-printed GO surfaces in order to obtain both a local photo-thermal GO reduction and the formation of nano-wrinkles along precise geometric pattern. Initially, after cells adhered on the surface, stem cells migrated and accumulated on the reduced and wrinkled surface. When the local density of the stem cells on the reduced stripes was high, cells started to proliferate and occupy the oxidized/flat area. The designed surfaces morphology guided stem cell orientation and the reduction accelerated differentiation. Furthermore the reduced sharp nano-wrinkles were able to enhance the GO antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA), common cause of prosthetic joints infections. This strategy can offer a revolution in present and future trends of scaffolds design for regenerative medicine.

Palmieri, V., Barba, M., Pietro, L.D., Gentilini, S., Braidotti, M.C., Ciancico, C., Bugli, F., Ciasca, G., Larciprete, R., Lattanzi, W., Sanguinetti, M., Spirito, M.D., Conti, C., Papi, M. (2017) “Reduction and shaping of graphene-oxide by laser-printing for controlled bone tissue regeneration and bacterial killing”2D Materials 

See also

http://www.newcomplexlight.org/nanotechweb-org-on-laser-printed-bone-tissue-by-graphene/

Observation of replica symmetry breaking in disordered nonlinear wave propagation

A landmark of statistical mechanics, spin-glass theory describes critical phenomena in disordered systems that range from condensed matter to biophysics and social dynamics. The most fascinating concept is the breaking of replica symmetry: identical copies of the randomly interacting system that manifest completely different dynamics. Replica symmetry breaking has been predicted in nonlinear wave propagation, including Bose-Einstein condensates and optics, but it has never been observed. Here, we report the experimental evidence of replica symmetry breaking in optical wave propagation, a phenomenon that emerges from the interplay of disorder and nonlinearity. When mode interaction dominates light dynamics in a disordered optical waveguide, different experimental realizations are found to have an anomalous overlap intensity distribution that signals a transition to an optical glassy phase. The findings demonstrate that nonlinear propagation can manifest features typical of spin-glasses and provide a novel platform for testing so-far unexplored fundamental physical theories for complex systems.

Davide Pierangeli, Andrea Tavani, Fabrizio Di Mei, Aharon J. Agranat, Claudio Conti, Eugenio Del Re, Nature Communications 8:1501 (2017)

Lasing on nonlinear localized waves in curved geometry

The use of geometrical constraints exposes many new perspectives in photonics and in fundamental studies of nonlinear waves. By implementing surface structures in vertical cavity surface emitting lasers as manifolds for curved space, we experimentally study the impacts of geometrical constraints on nonlinear wave localization. We observe localized waves pinned to the maximal curvature in an elliptical-ring, and confirm the reduction in the localization length of waves by measuring near and far field patterns, as well as the corresponding energy-angle dispersion relation. Theoretically, analyses based on a dissipative model with a parabola curve give good agreement remarkably to experimental measurement on the reduction in the localization length. The introduction of curved geometry allows to control and design lasing modes in the nonlinear regime.

Kou-Bin Hong, Chun-Yan Lin, Tsu-Chi Chang, Wei-Hsuan Liang, Ying-Yu Lai, Chien-Ming Wu, You-Lin Chuang, Tien-Chang Lu, Claudio Conti, and Ray-Kuang Lee in Optics Express 25, 29068 (2017)