Lasing in curved geometry

A paper by Hong et al reports about lasing emission on modes sustained by local curvature.

The use of geometrical constraints opens many new perspectives in photonics and in fundamental studies of nonlinear waves. By implementing surface structures in vertical cavity surface emitting lasers as manifolds for curved space, we experimentally study the impacts of geometrical constraints on nonlinear wave localization. We observe localized waves pinned to the maximal curvature in an elliptical-ring, and confirm the reduction in the localization length of waves by measuring near and far field patterns, as well as the corresponding dispersion relation. Theoretically, analyses based on a dissipative model with a parabola curve give good agreement remarkably to experimental measurement on the transition from delocalized to localized waves. The introduction of curved geometry allows to control and design lasing modes in the nonlinear regime.

Shenzhen-Roma Joint Laboratory on Nonlinear Photonics

A new joint laboratory between Dr. Lifu Zhang of Center for Optoelectronic Science & Technology at Shenzhen University (China) and Prof. Claudio Conti at the Department of Physics of Sapienza is being settled. The laboratory will study theoretical and experimental nonlinear photonics with emphasis on supercontinuum generation, spatio-temporal, and high-field phenomena.

Several joint post-doctoral positions are available in this initiative and open to researchers with a Ph.D. in Optics and Photonics with outstanding track record.

Please contact the team:

Dr. Lifu Zhang (zhanglifu@szu.edu.cn), SZU International Cooperation Laboratory

Prof. Claudio Conti, Dep. of Physics Sapienza, Rome