Squeezing of a nonlocal photon fluid

Quantum fluids of light are an emerging tool employed in quantum many-body physics. Their amazing properties and versatility allow using them in a wide variety of fields including gravitation, quantum information, and simulation. However the implications of the quantum nature of light in nonlinear optical propagation are still missing many features. We theoretically predict classical spontaneous squeezing of a photon fluid in a nonlocal nonlinear medium. By using the so called Gamow vectors, we show that the quadratures of a coherent state get squeezed and that a maximal squeezing power exists. Our analysis holds true for temporal and spatial optical propagation in a highly nonlocal regime. These results lead to advances in the quantum photon fluids research and may inspire applications in fields like metrology and analogs of quantum gravity.

M.C.Braidotti, A. Mecozzi, C. Conti, Phys. Rev. A 96, 043823 (2017)

OUTNANO project starts!

OUTNANO is a Marie Curie Fellowship in the H2020 program funding activity on Out of Equilibrium Nano-photonics

The Marie Curie Fellow is Andrea Marini, a top level young scientist with an extended research career in Nonlinear Photonics.

A new approach for studying novel optical materials in out-of-equilibrium ultrafast dynamics is the goal of this interdisciplinary projects committing together ideas of statical mechanics of complex systems and nonlinear photonics. We will conceive a new generation of nonlinear devices operating at the fastest achievable speeds for classical and quantum applications.

Quantum Simulation of Rainbow Gravity

Rainbow gravity modifies general relativity by introducing an energy dependent metric, which is expected to have a role in the quantum theory of black holes and in quantum gravity at Planck energy scale. We show that rainbow gravity can be simulated in the laboratory by nonlinear waves in nonlocal media, as those occurring in Bose-condensed gases and nonlinear optics. We reveal that at a classical level, a nonlocal nonlinear Schr\”odinger equation may emulate the curved space time in proximity of a rotating black hole as dictated by the rainbow gravity scenario. We also demonstrate that a fully quantized analysis is possible. By the positive $\mathcal{P}$-representation, we study superradiance and show that the instability of a black-hole and the existence of an event horizon are inhibited by an energy dependent metric. Our results open the way to a number of fascinating experimental tests of quantum gravity theories and quantum field theory in curved manifolds, and also demonstrate that these theories may be novel tools for open problems in nonlinear quantum physics.

The picture below shows spectra and configuration of particles trapped in a quantum simulation of a black-hole.

Braidotti and Conti, in ArXiv:1708.02623

Review In Annalen Der Physics on Time Asymmetric Quantum Mechanics

The description of irreversible phenomena is a still debated topic in quantum mechanics. Still nowadays, there is no clear procedure to distinguish the coupling with external baths from the intrinsic irreversibility in isolated systems. In 1928 Gamow introduced states with exponentially decaying observables not belonging to the conventional Hilbert space. These states are named Gamow vectors, and they belong to rigged Hilbert spaces. This review summarizes the contemporary approach using Gamow vectors and rigged Hilbert space formalism as foundations of a generalized “time asymmetric” quantum mechanics. We study the irreversible propagation of specific wave packets and show that the topic is surprisingly related to the problem of irreversibility of shock waves in classical nonlinear evolution. We specifically consider the applications in the field of nonlinear optics. We show that it is
possible to emulate irreversible quantum mechanical process by the nonlinear evolution of a laser beam and we provide experimental tests by the generation of dispersive shock waves in highly nonlocal regimes. We demonstrate experimentally the quantization of decay rates predicted by the time-asymmetric quantum mechanics. This work furnishes support to the idea of intrinsically irreversible wave propagation, and to novel tests of the foundations of quantum mechanics.

Time-Asymmetric Quantum Mechanics and Shock Waves: Exploring the Irreversibility in Nonlinear Optics, Annalen der Physik 10.1002/andp.201600349 (2017)


The Experimental Observation of Replica Symmetry Breaking in Random Lasers

Spin-glass theory is one of the leading paradigms of complex physics and describes condensed matter, neural networks and biological systems, ultracold atoms, random photonics, and many other research fields. According to this theory, identical systems under identical conditions may reach different states and provide different values for observable quantities. This effect is known as Replica Symmetry Breaking and is theoretically revealed by the change in shape of the probability distribution function of an order parameter named the Parisi overlap.

Despite the profound implications in the new physics of complexity, a direct experimental evidence of the Replica Symmetry Breaking transition, in any field of research was never reported.

C. Conti and coworkers show that pulse-to-pulse fluctuations in random lasers, and  a direct measurement of the Parisi overlap, unveil a transition to a glassy light phase in random lasers compatible with a Replica Symmetry Breaking.

This is the first evidence of Replica Symmetry Breaking and the first direct measurement of the Parisi overlap.


N. Ghofraniha, I. Viola, F. Di Maria, G. Barbarella, G. Gigli, L. Leuzzi and C. Conti reported on the first evidence of Replica Symmetry Breaking in Random Lasers by the direct measurement of the Parisi overlap distribution function (arXiv:1407.5428, Nature Communications 2015)