The intriguing connection between black holes’evaporation and physics of solitons is opening novel roads to finding observable phenomena. It is known from the inverse scattering transform that velocity is a fundamental parameter in solitons theory. Taking this into account, the study of Hawking radiation by a moving soliton gets a growing relevance. However, a theoretical context for the description of this phenomenon is still lacking. Here, we adopt a soliton geometrization technique to study the quantum emission of a moving soliton in a one-dimensional model. Representing a black hole by the one soliton solution of the Sine-Gordon equation, we consider Hawking emission spectra of a quantized massless scalarfield on the soliton-induced metric. We study the relation between the soliton velocity and the black hole temperature. Our results address a new scenario in the detection of new physics in the quantum gravity panorama.

L. Villari, G. Marcucci, M.C. Braidotti and C. Conti, J. Phys. Comm. 2 (2018) 005016