Topological Control of Extreme Waves

From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, new theories state that transitions between extreme waves are allowed. However, these have never been experimentally observed because of the lack of control strategies. We introduce a new concept of nonlinear wave topological control, based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions by the Riemann theta function. We prove it experimentally by reporting the first observation of supervised transitions between extreme waves with different genera, like the continuous transition from dispersive shock to rogue waves. Specifically, we use a parametric time-dependent nonlinearity to shape the asymptotic wave genus. We consider the box problem in a focusing Kerr-like photorefractive medium and tailor time-dependent propagation coefficients, as nonlinearity and dispersion, to explore each region in the state-diagram and include all the dynamic phases in the nonlinear wave propagation. Our result is the first example of the topological control of integrable nonlinear waves. This new technique casts light on dispersive shock waves and rogue wave generation and can be extended to other nonlinear phenomena, from classical to quantum ones. The outcome is not only important for fundamental studies and control of extreme nonlinear waves, but can be also applied to spatial beam shaping for microscopy, medicine, and spectroscopy, and to the broadband coherent light generation.

Marcucci et al. in ArXiv:1908.05212

Spin-orbit algebra with graphene

Laser & photonic reviews published the paper by Ciattoni et al. on the spin orbit coupling in graphene (arXiv version). The coupling of 2D electrons with OAM and Spin allows to control the state of nano-scale light beams, and is potentially useful for multilevel quantum gates.

Topological Photonics Inverse Problem by Machine Learning

Topological concepts open many new horizons for photonic devices, from integrated optics to lasers. The complexity of large scale topological devices asks for an effective solution of the inverse problem: how best to engineer the topology for a specific application? We introduce a novel machine learning approach to the topological inverse problem. We train a neural network system with the band structure of the Aubry-Andre-Harper model and then adopt the network for solving the inverse problem. Our application is able to identify the parameters of a complex topological insulator in order to obtain protected edge states at target frequencies. One challenging aspect is handling the multivalued branches of the direct problem and discarding unphysical solutions. We overcome this problem by adopting a self-consistent method to only select physically relevant solutions. We demonstrate our technique in a realistic topological laser design and by resorting to the widely available open-source TensorFlow library. Our results are general and scalable to thousands of topological components. This new inverse design technique based on machine learning potentially extends the applications of topological photonics, for example, to frequency combs, quantum sources, neuromorphic computing and metrology.

Pilozzi, Farrelly, Marcucci, Conti in ArXiv:1803.02875

Topological cascade laser for frequency comb generation in PT-symmetric structures

The cascade of resonant topological structures with PT-symmetry breaking is shown to emit laser light with a frequency-comb spectrum. We consider optically active topological Aubry-Andr\’e-Harper lattices supporting edge-modes at regularly spaced frequencies. When the amplified resonances in the PT-broken regime match the edge modes of the topological gratings, we predict the emission of discrete laser lines. A proper design enables to engineer the spectral features for specific applications. The robustness of the topological protection makes the system very well suited for a novel generation of compact frequency comb emitters for spectroscopy, metrology, and quantum information.

Pilozzi and Conti, arXiv:1707.09191