People think that **equations are not needed** if we have a lot of data and the way to organize them… is this true?

**Are equations useless for complex systems?**

**Are computers able to derive models for complex-systems more effectively than humans?**

We are announcing the International School and Workshop in collaboration with the University of Washington in Rome!

**Data-Driven Methods for Multi-Scale Physics and Complex Systems**

An interdisciplinary initiative aimed at committing together different disciplines with the data-driven physics!

]]>The use of geometrical constraints opens many new perspectives in photonics and in fundamental studies of nonlinear waves. By implementing surface structures in vertical cavity surface emitting lasers as manifolds for curved space, we experimentally study the impacts of geometrical constraints on nonlinear wave localization. We observe localized waves pinned to the maximal curvature in an elliptical-ring, and confirm the reduction in the localization length of waves by measuring near and far field patterns, as well as the corresponding dispersion relation. Theoretically, analyses based on a dissipative model with a parabola curve give good agreement remarkably to experimental measurement on the transition from delocalized to localized waves. The introduction of curved geometry allows to control and design lasing modes in the nonlinear regime.

]]>Standing out as the new wonder bidimensional material, graphene oxide (GO) has aroused an exceptional interest in biomedical research by holding promise for being the antibacterial of future. First, GO possesses a specific interaction with microorganisms combined with a mild toxicity for human cells. Additionally, its antibacterial action seems to be directed to multiple targets in pathogens, causing both membranes mechanical injury and oxidative stress. Lastly, compared to other carbon materials, GO has easy and low-cost processing and is environmentfriendly.

This remarkable specificity and multi-targeting antibacterial activity come at a time when antibiotic resistance represents the major health challenge. Unfortunately, a comprehensive framework to understand how to effectively utilize this material against microorganisms is still lacking. In the last decade, several groups tried to define the mechanisms of interaction between GO flakes and pathogens but conflicting results have been reported. This review is focused on all the contradictions of GO antimicrobial properties in solution. Flake size, incubation protocol,

time of exposure and species considered are examples of factors influencing results. These parameters will be summarized and analyzed with the aim of defining the causes of contradictions, to allow fast GO clinical application.

In a paper in ArXiv, by Leone Di Mauro Villari, Giulia Marcucci, Maria Chiara Braidotti (all of them top complexlight students), and CC, a toy model concerning Hawking radiation by moving black holes is proposed.

Within a simple one-dimensional theory, based on solitons of the Sine-Gordon equation, the authors claim that Hawking emission may be extracted by the concomitant observation of gravitational and electromagnetic waves emitted by colliding black holes. The effect is due to the black-hole-velocity dependent emission spectrum (figure above), which results into an electromagnetic frequency chirp detected by the observer.

]]>