Generalized Uncertainty Principle and the Photon (Templeton project)

In recent years, researchers question about the limits of the uncertainty relation.

Hints from quantum gravity theories suggest that the Heisenberg principle should be generalized.

Some considered implications in high energy physics, others have considered the mechanical motion of massive objects to look for possible tests of these supposed limits to the most important paradigm of quantum mechanics.

In a project funded by the John Templeton Foundation, we consider the case of the photon, and study the possible way a generalized uncertainty principle may play a role in modern photonics, nonlinear and quantum optics.

The project started in 2015 and will finish in 2017, stay tuned.

Related posts:

The Quest for Quantum Gravity in Optics

The Math of Irreversibility

Black holes evaporate, black holes are solitons, solitons evaporate !

Time Travel is NOT Possible (press release)

University Sapienza

ERC-PoC VANGUARD

Project code 664782 (ERC-PoC)

The ERC Proof of Concept Grant VANGUARD, acronym for Versatile optomechanicanical graphene device for bio-tissue engineering aims at the realization of a novel bio-inspired laser-driven bio-templating approach for antibacterial surfaces and for tissue engineering.

The project lasts 18 months, ends in September 2016 and is funded by 150keuros

Press release on the VANGUARD project

Antibacterial Action of Graphene

The Math of Irreversibility

In a paper in arXiv Giulia Marcucci and Claudio Conti report on the mathematical structures of the so-called Time Asymmetric Quantum Mechanics. This theory predicts that time-travel is not possible and explain evidences as the Big Bang or the decay of unstable particles. The authors argue that possible shaping of the initial state of a system may furnish a road to validate these fascinating developments in quantum mechanics. The work also follows the experimental evidence of the quantization of the decays rates.

The picture above  shows a pictorial representation of the Gelfand triplet, the phase space of the Time Asymmetric Quantum Mechanics