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Complex photonics
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Complex photonic devices I Complex nonlinear dynamics Numerical methods

eTransmission matrix : eClassical and quantum solitons eBeam Propagation Methods
*Nonlinear transmission matrix z sExtreme waves *FCOMB solitons
eApplications (all-optical switching and bio)
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A crazy idea for photonics - and engineering -
in the new era of machine learning

OLD SCHOOL:
given an application, design and fabricate a device

NEW SCHOOL:
given a device, find a way to use it for your application
(.... not very new indeed
.... but we have new tools ...
and we need a very complex device)




Outline

* Nonlinear complex systems by the transmission matrix
* Green’s function
* Propagator
* Nonlinear perturbation to the propagator
* Applications

* Classical and quantum optical solitons
* The nonlinear Schroedinger equation
* Numerical methods
* Transition to dynamical complexity




Structural Vs Dynamical complexity

By morphology By nonlinearity

* Random systems * Highly nonlinear regimes
* Complex arrays of waveguides * Many solitons

* Coupled cavities * Shocks and rogues waves
* Biological systems * Multimodal dynamics

e Ultrafast dynamics and
plasmonics

Random lasers
(highly nonlinear and disordered systems)



Perturbative Vs non-perturbative extremes

Structural complexity Dynamical complexity

* Nonlinearity is a perturbation to ¢ Nonlinearity is the leading actor
tune or probe the systems in @ nonperturbative regime
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Structural
complexity



Ising machines and optical neuromorphic Drug delivery
cenpliiy Cancer treatments
Cryptography Microscopy

Classical and quantum SEensors




Examples

* Complex photonic circuits
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Van der Sande, Nanophotonics 2017, 6, 531
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Examples

* Random systems




Examples

* Biological systems




Examples

* Metasurfaces




— - -
~

=
*~
=<




Green’s function
and Dirac notation

Field propagator

Local outline

Nonlinear
perturbation to the
transmission matrix




Green function and modes (scalar case)
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Leonetti, CC, Lopez, NPHOTON 5, 615 (2011)
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Measure
the Green’s function ?



The Green function is a complex quantity

Pn ()" on(r
T




Green function (GF) at the resonance

2
V3G + {‘;—EET (r) (1 +207) G = —5(r — ).

2 n(r')*on(r)
- w214 y)2 —w?

G(r,v',w) =c

1 1 17T
r\:"rPV P 5 - T
w?(1 4 1y)? — w2 (uﬁ —w,ﬁ) + 2w, (w = wn)

1 1 1T
R :Pv(wz—w,ﬁ) +Eq§(m—wn)
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Density of states and local density of states

N ((.U) — Z 5(w — wn) DOS

plw,r) = 25(w — wWn)@n (1) @n(r) Ho5
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LDOS is the imaginary part of the GF

G(r}r’,w):c2zn:gp:(r’)apn(r) :PV (w 1 2) F— 5(w—wn):

= b

SG(r,r',w) Zg}n O(w — wp).

2—w5s" G(r,r,w)].

r,w) =
p(r,w) —




Local d
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Engineering of light confinement in strongly
scattering disordered media

Francesco Riboli"2*7, Niccold Caselli'2, Silvia Vignulini"”, Francesca Intonti2, Kevin Vyn:k“,
Pierre Barthelemy”, Annamaria Gerardino®, Laurent Balet4, Lianhe H. Li%, Andrea Fiore®!,
Massimo Gurioli'? and Diederik S. Wiersma'?

PRL 119, 043902 (2017) PHYSICAL REVIEW LETTERS ek e

28 JULY 2017

Tailoring Correlations of the Local Density of States in Disordered Photonic Materials

F. Ribu]i.t'z‘i‘; F. Uccheddu,” G. Monaco," N. Caselli.™™® F. Intonti,™® M. Gurioli.”” and S. E. Skipclrov”‘{
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Canonical notation for the Green’s function

V2G(r,r') + kie, (r)G(r,r') = —6(r — ¢')

z — L(r)|G(r,x';2) = 6(r — r')

L(r)p,(r) = Apdn(r) > oulr)d, (') =8(r —1') .

T




Dirac notation for classical fields

On(r) = (r|Pn)

Gn ir)* — <¢n|r>

O(r —r')L(r) = (r|L|x")
G(r,r';z) = (r|G(z)|r")
(r[r’) = o(r — r')

J drfr)(r| =1

See Economou, Green’s function in Quantum Physics



Green function in the Dirac notation

(Z _ L) G(Z) =1 [z = L(r)]G(r,x";2) = 0(r — 1)
L{¢n) = An|9n)

G(z) = 1 -3 |(in><f:|




Green’s function, vectorial case

VX V x B(r) + e, (1)E(r) = 110w (r)

E(r) = ’L/J,oc,u/ dr'G(r,r";w) - J(x)

w2

—VxVxG(r,r";w) + —¢e.(r)G(r,r;w) =6(r — 1)1

2




Non-canonical modal set

The vectorial equation for the EM field is

w2
VxVxE—er(r)c—zEzo

we define the modes
wi
V XV X en —Sr(r)c—zen =0

which obey

f er(r)em e, dV = 0pn.
v
the transversality condition
V. (er(r)en(r)) =0
For these modes the definition of the DOS is

N (w) = Zé(w — Wn),

but the LDOS needs to accunt for the vectorial nature of the e,,, and we have

pr,w) = 3 Jen(r)25(w — w,)

The modes e,, are not orthogonal in the usual sense - note the quantity €, (r) in
and the operator V x Vx is not Hermitian, hence we cannot
map directly to the general formalism for the Green function
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Canonical modes for Maxwell equations

¢n(r) = Ver(r)e,(r).




Properties of the canonical set

V :'\/Er(r)ém: = 0.

S bulr) - 65, () = 5(r — 1)




Dirac notation in the vectorial case

1

er(r)

V X

[z —L(r)]Gp(r,x") = {ZGL(r,r’) —

1

G() = 1 Y fn) (] = Y 000!
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Field propagator

z [nm]

Er(T) = €p(r) + 4T

=20 s 1 n S| N i N 1
=20 0 20 40 60
y [nm]

—V x V x E+ ki [ep(r) + e4(r)] E = 0.

VOLUME 74, NUMBER 4 PHYSICAL REVIEW LETTERS 23 JANUARY 1995
Generalized Field Propagator for Electromagnetic Scattering and Light Confinement
r E — E I. Olivier J. F. Martin*

IBM Research Division, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland

Christian Girard
r O E— O r Laboratoire de Physique Moléculaire UA CNRS 772, Université de Franche Comté, 2530 Besangon, France

Alain Dereux

Institute for Studies in Interface Sciences, Facultés Universitaires N.—D. de la Paix, 5000 Namur, Belgium
(Received 9 August 1994)




NLP2019

Field propagator in Dirac notation

—V xV x E+kie,.(r)E = 0.
D(r) = -V x VX,

(D+e) E)=0

(r|E) = E(r) (rlefr’) = kZz,(r)d(r — v'),




Input field and total field

€ = e + €5

(D + ep) |Eqg) = 0,

(D+e,+es) | E)y=0

Input beam (plane wave,

Total field

40

Gaussian beam, etc...)

i
60
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The Green’s function

(D +ep+es) |E) = (D +ep)[Eo) =0,




From the Green’s function to the propagator

(D +ep+e)|E)=(D+e)Eg) =0,

(D +ep+es) |E)=(D+ e, +es) |Eg) —es|Ep),
(D+e,+es) G=1.
E) = [Eo) — Ge,|Ey).

E) = K|E) K =1- Ge..

r|K|r') = 16(r — v') — kie, (') (r|G|r’).
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Transmission matrix



n
«CHANNELS» i
«CHANNELS» R r’?

|4-)
é—
Pirey:)
T 97T \T/\‘s—) e
Gl i |ES=c lm+)4-c,'l"'->t// N




The transfer matrix is unitary
Eﬂ;ut — Z k':rn.n E:;n

2

Sjerf = Slex




Measurement of the transmission matrix

g, in|2 __ 2 ey poin |2 mr xx in
Im = |3m + E c R,,!,,_E” = |3m| + | E c En + 25R ( Sm E }bnmEﬂ_ )
n n

In the four phases method, one makes four measurements with a = 0, o = 7/2,
a = and o = 37 /2. Correspondingly one has

I:El - |gmt2 + | zn "‘“171E"|2 + 25R (grn Z‘Jl ‘i"”‘"E‘j':})

'31-1/2 = |9mE2 + | Zn ’t'mnEu| - 29 (';:n Z,, kmnE;:})
I7, ‘ |*'-"mE + 20 kmnEn [ —2R (‘5:1 2 n kmn Ewlan)
I"?’:r/z = |5‘mE2 + | Z:n ]"mnE |2 + 2(3 (G:L Zn }"m.n E:iu)

Combining the previous equation, we have
0 T 3m/2 w2 % X in
1 (Im [m) l (Im - Im ) =5m Z I'cim En

If one inject only the input mode n such that )" is one only for a particular n,
o n o

one has

1 0 s
5(1 —1I7) +

me T

(Ij:”’2 IJT:E/Q) = S:uk!nn

The quantity s,, is in general different for all the modes, but in practical applica-
tions it is just a scaling factor in the matrix elements k,,,, that is nearly the same for
all modes. A proper measurement would require a complex interferometrix setup,
however a simple and feasible approach is observing that the transmission matrix
as diagonal elements of the order of unity, hence one can estimate its average by
the mean of the value s k,,,, when varying n:

T
E S Hl ‘mn

and approximate the transmission matrix as

() =

*

‘5,”,1
knul = k’nlu
(87)

— Reference
Part

- y

Controlled Part

Observation
Window

Laser 532nm

b SLM

|8 Selected for a Viewpoint in Physics
PHYSICAL REVIEW LETTERS

&

Measuring the Transmission Matrix in Optics: An Approach to the Study and Control
of Light Propagation in Disordered Media

week ending

RL 104, 100601 (2010) 12 MARCH 2010

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan

Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, ESPCI, 10 rue Vauguelin, 75005 Paris, France
(Received 27 October 2009; revised manuscript received 11 January 2010; published 8 March 2010)



Focusing light
in complex media

Application of the transfer matrix
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August 15, 2007 / Vol. 32, No. 16 / OPTICS LETTERS

Focusing coherent light through opaque strongly
scattering media

I. M. Vellekoop* and A. P. Mosk

2309




Figure 1| Principle of wavefront shaping. a, An unmodified coherent beam of light travels one mean free path (/) with minimal scattering into tissue.
A fraction of beam directionality is preserved up to the transport mean free path length, I*. b, By wavefront-shaping the incident field with an SLM, it is
possible to focus within tissue beyond I*.

nature

REVIEW ARTICLE

photonics

PUBLISHED ONLINE: 27 AUGUST 2015 | DO1: 10.1038/NPHOTON. 2015.140

Guidestar-assisted wavefront-shaping methods
for focusing light into biological tissue

Roarke Horstmeyer*, Haowen Ruan and Changhuei Yang
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Light focusing in the Anderson regime

Marco Leonetti]-z, Salman Karbasii, Arash Mafi® & Claudio Conti4

—»> Optimization (W1
routing
|

Fibre lip

timization After optimization

Figure 6 | Localized mode and adaptive focus. Light scattered from the
side of the fibre in correspondence of the exit tip (a) before the
optimization process and (b) after the optimization process. The side of the
panels is 160 pum.




Focusing in a single point is a
simple form of
optical machine learning




What is an «ARTIFICIAL NEURAL NETWORK»?

Is it a magic mathematical object that displays intelligence ?

* May be IT IS |

* But - perhaps - is just a very useful «UNIVERSAL» fitting function !




Artificial Neural Network =
Universal Interpolator

A universal fitting function that
y e f (X X a b ) takes a N-dimensional input x and has outputy
> %% :

that can be tuned by acting on the parameters




Assume that you want to focalize light

e Solution 1: You take a lens

* Solution 2: you take any kind of transparent «complex» device
* complex photonic sample(=coupled waveguides, fiber, random medium, etc...)

 find the way to have fitting parameters (=SLM, nonlinearity, electrooptics, ...)
e and train it (...many strategies ...)

* A device that focuses light is

an optical function that maps a plane wave in a single spot
* We can use a universal interpolator to realize it



Focusing a plane wave as a neural network

E" = A4 ' Plane wave input

A =4

a =0

[ =|A]? = 1/N,

h(t) h(2)

7
<7 <R

oo @ Sve

L

A ﬁmv
g
: \‘-: . output layer

input layer

P bl X ccD y
h .

hidden layer 1  hidden layer 2



No training in the case of a random medium

EnSLM — Aot — /Lei%
N

No training
‘EOUt 2 _| Z kmnewﬁn‘z ¢n — O
] 1
2 2
— \xr mn — X7 mn kmn
(o) = (713 honnl?) = 7 Sl = (o




Single point focusing: «exact solution» Meem

hr
1 ;
|E?nut|2 - El Z kfﬂ-nﬁuj” |2
n=1




The number of modes and the enhancement

2
1 1
n q n

noq#n
(Lnaw) = {I0) + 3¢ 32 S (nn ) imal) |kan\ o S il = ()
noqFn n
(o) = V720 = YT () = () [ (N =1 +1

- (Ima:.v> -
1Ty T

NS

(N—l)—l—lng

ol. 32, No. 16 / OPTICS LETTERS 2309

Focusing coherent light through opaque strongly
scattering media




Feeback loop to find the maximal intensity
(training)

The optimization of the output 5 I
intensity can be found by various ) 3[Q\ after
iterative algorithms 1 i
- sequential .
Vellekoop, 2008

- Monte Carlo
- genetic algorithms

training
| 25
- etc 120
15
10
5

Pierangeli et al, arXiv:1812.09311




Multiple point focusing and image formation

V<>

|&d Selected for a Viewpoint in Physics week ending
PRL 104, 100601 (2010) PHYSICAL REVIEW LETTERS 12 MARCH 2010
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Measuring the Transmission Matrix in Optics: An Approach to the Study and Control
of Light Propagation in Disordered Media

S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan

Institur Langevin, ESPCI ParisTech, CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75005 Paris, France
(Received 27 October 2009; revised manuscript received 11 January 2010; published 8 March 2010)
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Why ?

* Modulating the properties of the transmission of a complex system is
the starting point for control and applications

e Switching

* Sensors

* All-optical neural networks
 All optical processing




Areogel: random and (thermally) nonlinear !

Perturbed channels

Unperturbed channels

LTTTRT ] oo

Pump

FIG. 1. Sketch of the formation dynamics of transmissive
channels in a pump/probe configuration.

DM pg. — 4~ Pol. LP ccb
£ | B}
R
g = ——
o (& FL @ !
® Pol
£
o
m
[=0]
[/}
~

FIG. 1. Pump-Probe Optical setup with wavefront shaping of the probe beam by SLM.

Fleming, CC, Di Falco, ArXiv:1809.07077



Measure of the TM:
unfolding the modes into channels

b CCD(1) f

&

a

The process for forming the TM from raw image data is outlined in figure S4. The 2D
pixels of the CCD (M pixels) and of the SLM (N pixels) are mapped in a MxN TM matrix.
To improve the SNR in the CCD images, we sum the total black-white intensity values over

8x8 pixels, giving a measurement range between 0 and 16383, rather than 0 to 255.

The phase of each pixel of the SLM is tuned in turn in the range (—m, ), keeping the ' l
SLM(N) CCD(m) CCD(M)
m=(1..i..M)

d
2L

other pixels at —7 and the corresponding CCD image is acquired. The light impinging on

the constant area of the SLM interferes with that of the tuned pixel, to access the complex c

CCD(m)

values of the transmission channel. This process produces a stack of 3D images for each

SLM pixel, as shown in panel c).

K_(n} m) e i‘p(n.m)

e n=SLM(1...N) ¢}(n,m)
()
\ K(n,m)

The intensity of each pixel in the stack changes with the phase of the SLM pixel in a
cosine function. The amplitude and phase of the relative elements of the TM are given
by the peak-to-peak value of the cosine function and by the offset respect to the reference

phase, respectively, as seen in panels d-¢). A typical complex TM is shown in panel f).

FIG. 4. Process outline for the determination of the Complex Transmission Matrices.

Fleming, CC, Di Falco, ArXiv:1809.07077




Raw data for the transmission matrix

SLMI(n)

CCD(m)
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The transmission at different pump power

/4 L< K >u 4 0 ILe.ea| 0.2

d)| - P=0 mW

P=10 mW

K'=K

P=20 mW

-
=
P

Fleming, CC, Di Falco, ArXiv:1809.07077
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Nonlinear modulation

5mW 20 mW

A

gl 2
|

N

\V

—1t/8

A

sz O | |

N —9
V

g2 -0.3n ‘ :

= 5 10 15 20

Pump Power (mW)

Fleming, CC, Di Falco, ArXiv:1809.07077



Ultrafast switching in random media

Scattering
medium

E-field

ul A
E

Re E

Re E var (A¢)

400 nm 633 nm
150fs 150 fs

A A
L L

Variable
delay

Camera

L5 P2  Sample BS L4 s L3

Intensity (norm.)

(2]

Tpump/Tnopump

b
Pump on 1.24 M
81  Pump off 1.1
£ 1.0
6 g ]
~ 0.9
(=1
41 £ 08
I~
24 0.7+
0.6
0 T T T T T T T T T T
-4 -2 0 2 4 -8 6-4-2 0 2 4 6 8
Distance (um) Probe delay (ps)
1.2 ¥ d 5]
1.14 1.1
1.0+ CEL 1.04
g
0.9 = 0.91
£
0.8 Ha 0.8
0.7 0.7
0.6 0.6
86-4-20 2 4 6 8-6-4-2 0
Probe delay (ps) Probe delay (ps)
Light: Science & Applications (2014) 3, e207; doi:10.1038/1sa.2014.88
OPEN © 2014 CIOMP. All rights reserved 2047-7538/14

www.nature.com/Isa

ORIGINAL ARTICLE

An ultrafast reconfigurable nanophotonic switch using
wavefront shaping of light in a nonlinear nanomaterial

Tom Strudleyl, Roman Bruck', Ben Mills? and Otto L Muskens'
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Nonlinear perturbation
to the propagator



Perturbed propagator
(D + eb) |E0> = 0, g (r)=¢g,(r)+e¢,(r)

(D+e,+es)E)=0 |E)=K|Ep)

£,(r)=¢,(r)+¢,(r)+As(r) B, i
(D+e,+e,+e)|E)=0 K% {éé
E) =K'|E) = KK|E)). [ 1 ] [ T 1 [eeee
I{"r — 1 . Gfe"' Eﬁfnllél Ske tph It;/tlh 'tt; rma hg dy amics of transmissive




Nonlinear perturbation as a new learning level
E') = K'|E) = K'K|E). -~ Pertnbed channe

Unperturbed channels

NL
kmn - k:nqkqn I‘(‘F =1— GIEI H

TR

Pump

11T T

FIG. 1. Sketch of the formation dynamics of transmissive
channels in a pump/probe configuration.

! —
Kimg = Omq + Wing, Wng = —(m|G'€e'|n).

ki}; — kmn + wmqkqn — kmn + {wmlkln + ...+ fmean-




The effect of the perturbation on the focusing

ki}; — kmn + wmqkqn — kmn + Win1 kln + ...+ u'meNn-

([Fmn ™) = ([Kmn*)- B
I;/& -
ML

NL mn mn ! )
k — kﬂ’hﬂ. K — k?’ﬁ,ﬂezﬁ quL - :J/ {

" \/1 + 203 N : § 0% 10 15 20
I“Mﬂr'x ') r::;x Pump Power (mW)
/ Tw
Sl (mg) om0 [ adoneone
0

Fleming, CC, Di Falco, ArXiv:1809.07077



Effect of the perturbation on the focusing

The nonlinear refractive perturbation reduces the enhancement

4 1.00

4 0.75

Correlation

4 0.50

4 0.25

syun “gJe] Ajsuajy)
un °q

_..__Mean Background |

0 10 20 30
Time[s]

Fleming, CC, Di Falco, ArXiv:1809.07077
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Tumor morphodynamics

Application in biophysics



Light propagation in living (!) tumor models

Deep optical neural network by living tumour brain cells

Authors: D. Pierangeli'*f, V. Palmieri**t, G. Marcucci'*, C. Moriconi’, G. Perini’,
M. De Spirito?, M. Papi**, C. Conti'**

ArXiv:1812.09311

Glioblastoma cells forming a
spheroidal cancer model.

Spatial
Light
Modulator




Training the light transmission

b
CW s SH
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L3 IR
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Nonlinear perturbation
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Chemical perturbation (chemotherapy)

a
living cancer
- spheroid
£l
=
S
5
>
0 12 24 36 48
time (x 100 s)
d
CTRL
CIS
80pg/ml

30 min

0 min

60

o
>
y (x 100 pum)

10

60 min

living spheroid

with chemotherapy

12 24 36 48 60
time (x 100 s)

120 min 240 min

10

480 min

Persistence time
(3]

Freely evolving CTRL
(no chemotherapy)

Chemotherapy .
administered
CIS 80pug/mi

Freely evolving CTRL
(no chemotherapy)

Chemotherapy
administered
CIS 80pg/mi

100 200 300 400
time (x 100 s)

500



— - -
~

=
*~
=<




NLP2019

RESEARCH

OPTICAL COMPUTING

All-optical machine learning using
diffractive deep neural networks

Xing Lin"*3%, Yair Rivenson*?*, Nezih T. Yardimei"?, Muhammed Veli"*%,
Yi Luo23, Mona Jarrahi"?, Aydogan Ozcan"23*+

3D Printed D°NN
(Classifier)

Fashion —-MNIST

el WRERR et o
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Lin et al., Science 361, 1004-1008 (2018) 7 September 2018
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Deep learning with coherent nanophotonic circuits

Yichen Shen™", Nicholas C. Harris'%, Scott Skirlo', Mihika Prabhu', Tom Baehr-Jones?,
Michael Hochberg?, Xin Sun?, Shijie Zhao*, Hugo Larochelle®, Dirk Englund' and Marin Soljacic!
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Other applications

* Ising machine and combinatorial problems
 Random lasers
* Quantum gates and quantum cryptography




Nonlinear Optics

¢ Nail Akhmediev, Australian National University, Australia

OSA Nonlinear Optics
Topical Meeting

¢ Jens Biegert, /CFO -Institut de Ciencies Fotoniques, Spain
15 - 19 July 2019

Waikoloa Beach Marriott Resort & Spa « John Bowers, University of California Santa Barbara, United States
Waikoloa Beach, Hawaii, USA

e Daniel Brunner, CNRS, France

Hui Cao, Yale University, United States

Demetrios Christodoulides, University of Central Florida, United States

Majid Ebrahim-Zadeh, ICFO -Institut de Ciencies Fotoniques, Spain

Deadline 5 feb 2019

Miro Erkintalo, University of Auckland, New Zealand

Shanhui Fan, Stanford University, United States

Mark Foster, Johns Hopkins University, United States

Rupert Huber, Universitit Regensburg, Germany

Franz Kaertner, Center for Free Electron Laser Science, Germany

Tobias Kippenberg, Ecole Polytechnique Federale de Lausanne, Switzerland

Yuri Kivshar, Australian National University, Australia
e J. Kutz, University of Washington, United States

¢ Marko Loncar, Harvard University, United States

Kathy Lidge, Technische Universitdt Berlin, Germany

Alexander Lukin, Harvard University

Alireza Marandi, California Institute of Technology, United States

Alessia Pasquazi, University of Sussex, United Kingdom

Antonio Picozzi, Centre National Recherche Scientifique, France

Peter Rakich, Yale University, United States
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Dynamical
complexity

Nonperturbative nonlinearity



Fermi-Pasta-Ulam-Tsinguo

% Supercontinuum
¢ 3 0 dB

Anderson localization

Shock waves
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Simple Vs Complex

The number of «states» (linear or
nonlinear) is a simple way to distinguish
simple and complex scenarios

This is related to the amount of information
you need for any mathematical description
of the system

https://www.behance.net/gallery/6909553/The-Geo



States due to
nonlinearity?

.... solitons ....
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The NLS from nonlinear Maxwell equations

. Nonlinear
Optical Fiber Optics
Solitons ' i

Spatial case Temporal case

A =i 4P ra—o
5 " el - i T3S ot




Souls of the NLS (focusing)

2
i@ + lM 4 ’u‘Zu —0 Simple normalized NLS equation
(95 2 d12 ’ (fundamental soliton, supercontinuum, and related)
82 o) NLS in the hydrodynamic regime
IEWI + 3 Wxx + W | W | — Oa (rogue waves, shocks, FPU, and complex wave regimes)

Second quantized NLS

z@tgb — _QSSC:IZ -+ 26@[51- Q5Q5 (quantum soliton, squeezing, and all of that)
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NLS full optional

oU oF U
/ 07 Z /e' oT*
E>2

0
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Souls of the NLS (focusing)

du  10%u 5
i—+ ==+ |u['u=0, NONLINEARITY = DISPERSION
dE  207?
W =ul¢g
82
ey + —VYyx + w|w|2 = ( NONLINEARITY >> DISPERSION
2 ?

Z(%;& — _émx + 26(%1-@3@3 ?P0??




Souls of the NLS (focusing)

du  10%u 5
l% + EW + ’ul u =20, >10000 published papers
82
[eVy; + wax + ¥|yr|? =0, 100-1000 published papers

Z@t& — _¢E:E:IJ -+ QCéqugg 10-100 published papers




Simple
derivation of

aaaaaaaaaaa




From scratch ...




The wave equation (scalar is enough)
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Time harmonic field

£ = Ecos(wt — kz) = R[Be~"witikz]
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Helmholtz equation

& = R[E(x,y, 2)e 4]

9
V2E—I—w2n—2E -0
c

CeEp
2

I=—E]" = |A]°




The nonlinear refractive index

n = ng + An[|A|*] = no + An|[I]

An = nol




The paraxial approximation

2 2 2 A
+2ika—A+ 81;1+6124 +2i2 28—
Z Oz \ Ox" 0y n,
0y A =0
A 2A Al?
23k6——|—6——|—2k2n2| | A=0

0z  Ox? no
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Normalization and single soliton solution

ou 10%u

2
i —0
la’g'+2c91:2+|u|u :

u(§,7) = nsech[n (1 —1,+ 8&)]expli(n® — §°)& /2 — idT+idy],




Diffraction (or dispersion) and self-trapping

Beams tend to delocalize (spread) in space

Nonlinear effects trigger self-trapping

ty (a.u.)
| —
Intensity (au.)

] \ X ! - I.ggg -300 5
o0 2o 100 D 1 z 50
S 100
H ® (M om)

Low intesity = diffraction High intensity = self-trapping




The origin of the self-trapping

Refractive index 1 = 1, + n,l n,>0 : focusing
n,<0 : defocusing

(a)

(b) I=8.2 TW/cm® (g




Numerical solution
of the NLS

The beam propagation method




The split step method
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Matlab program for the split step

Solution of the NLS by the split-step method
By Claudio, January 2019

close all
clearvars

Grid Parameters

Deltax=18; % windows

nplot=200; % plot number

nz=1000; % step between plots
zmax=1; % length

nx=4096; % number of points along x

Initial condition parameters

N=10; % soliton number

Grid definition

zstep=zmax/(nz-1)/(nplot-1);
dfx=1/Deltax;
xmin=-Deltax/2;

%point alongz per plot
zplot=linspace(®@,zmax,nplot+l);

%point in x
ix=1l:nx; x=xmin+(ix-1)*Deltax/(nx-1); xs=(ix-nx/2)/Deltax;

Propagator for the linear part

ntx=0;
xx=zeros(nx,1);




The soliton effect compressor

6.3 Soliton-Effect Compressors

Optical pulses at wavelengths exceeding 1.3 um generally experience both
SPM and anomalous GVD during their propagation in silica fibers. Such a
fiber can act as a compressor by itself without the need of an external grating
pair and has been used since 1983 for this purpose [74]-[93]. The compression
mechanism is related to a fundamental property of higher-order solitons. As
discussed in Section A.5.2, these solitons follow a periodic evolution pattern
such that they undergo an initial narrowing phase at the beginning of each

Nonlinear
100-m FIBER F]ber (:)p“(,.s

Fiith Flitinn

—=*+—0.26ps

INTENSITY

WITHOUT WITH BEST
SUPPRESSION SUPPRESSION

—— —_—
Jp—— ~— —— ———— e
- - —_————

1
-5 o] 5

TIME (ps)

Figure 6.9 Autocorrelation trace of a 7-ps input pulse compressed to 0.26 ps by using
a soliton-effect compressor. Dashed and solid curves compare the pedestal with and
without the nonlinear birefringence effect. (After Ref. [74])




Simulation of the fundamental soliton

v (7,0)=sech(x)




N=2 soliton (higher order soliton)

w (7,0) = Nsech(x)
N=2 o




N=3 soliton

60 .,

50

40 |




Analytical solutions (see later)
for N sech as initial condition
tell us that we have
periodical dynamics with period pi/2
for any integer N
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Before the «Nature Whatever» era

284 Supplement of the Progress of Theoretical Physics, No. 55, 1974

B

Initial Value Problems of One-Dimensional Self-Modulation
of Nonlinear Waves in Dispersive Media

Junkichi SATSUMA and Nobuo YAJIMA*

Department of Applied Mathematics and Physics
Kyoto University, Kyoto
*Research Institute for Applied Mechanics
Kyushu University, Fukuoka
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PROBLEMS HERE !!!!
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For large N «dynamical complexity» emerges

The system has a «landscape» of states and visits them in a way that is

dependent on the history

Numerical noise = temperature

Large sensitivity to any form of noise

Potential Energy Landscape

(a) (b)

shallow minima: minor collisions

rare event

system dynamics deep minimum:

collision generating a
rogue soliton

Equilibria of the weak-interaction model

-1,500

-2,000

-2,500

shallow minima

deep minimum: generation
of rogue soliton

0

1,000 2,000 3,000 4,000 5,000
Realization nhumber

PHYSICAL REVIEW E 72. 066620 (2005)

Complex light: Dynamic phase transitions of a light beam in a nonlinear nonlocal disordered
medium

Claudio Conti*
Research Center “Enrico Fermi” Via Panisperna 85/A 00184, Rome, Italy
and Reserch Center SOFT INFM-CNR, Univ y “La Sapienza,” P. A. Moro 2, 00185, Rome, Iialy
(Received 10 December 2004: revised manuscript received 3 August 2005; published 30 December 2005)

Research Article Vol. 2, No. 5/ May 2015 / Optica 497 |

Rogue solitons in optical fibers: a dynamical
process in a complex energy landscape?

AnpREA ArmMARoLL,"? CLaupbio Conti,® anD Fasio BiancaLana™*



Analytical solution
QRUEINN

Inverse scattering theory




Fourier linear evolution

w(x,0)=— j w(k,0)e ™ dk

5 (92
82 8x 62

y (k,z) =y (k,0)exp(—ik’z)

w(x,z)= j y (k,0)exp(—ik’z)e™ dk




Expand in the initial data in the spectrum

(plane waves)

Evolution in
the spectral

Evolve the plane waves

domain
(linear case)

Compose the evolved plane waves




Expand in the initial data in the spectrum

(plane waves and solitons)

Evolution in
the spectral

Evolve the plane waves and the solitons

domain
(nonlinear)

Compose the evolved plane waves and the
solitons




Nonlinear Fourier transform

Fast Numerical Nonlinear Fourier Transforms

Sander Wahls, Member, IEEE, and H. Vincent Poor, Fellow, IEEE

arXiv:1402.1605
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The scattering problem for the nonlinear FT

Odu  10%u L
zﬁ—l—zﬁ—l-hﬂu—o,
iavl Fuv, = Qv
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0T 2 1
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The nonlinear Fourier transform

As in linear systems, for the NLS we can define a «spectrum»

For the NLS the spectrum is made by the standard continuous spectrum and
by a discrete number of solitons

Calculating the spectrum — however — is not as easy as doing a linear Fourier
transform

Nonlinear Fourier transform
* Continuous spectrum
* Discrete solitons
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Example by our matlab code

Evolution of a sech (only discrete spectrum, one or more solitons)

Evolution of a Gaussian (discrete and continuos spectrum, varying the
input amplitude)

0
0.5
1

w13




Applications

* Nonlinear telecommunications

* Novel quantum sources

* High power lasers

» Ultra-broad band sources (hollow core fibers)




Problem

When the number of solitons grows
(hydrodynamic limit) both the
numerical methods and the analytical
solutions get into trouble

Non trivial phenomena emerge related
to rogue waves, shock waves and
recurrence

These complex regimes need both
advanced numerical and analytical
techniques (see poster by Giulia and the
lessons by Stefano)

CONTROL OF NONLINEAR EXTREME AND QUANTUM WAVES

o .




Quantum solitons




The quantum nonlinear Schrodinger equation

Bethe ansatz

Exact solution due to Bethe 1931

1019 = — Gy + 260! 99
The second-quantized Hamiltonian of the NLS is
= [ dn (66l +cdl6166),  0ulv) = Hlu)
Superposition of states with n particles
V)=22, S [ f(@nez,.zn )dT (21)91 (22) .01 (wn) de1 dzz... dzn |0)

>l lan|*=1 [ fn(x)]? dx=1




Exact equation for the distribution function

10 frn (X, 1) = —Z—.%—Qc Z 6 (xj —xi)| fn(x,1)

Bethe ansatz (sum over permutations P)
n
fn — ZAP exXp ZZkP(j)xj
P j=1
C :
k; :p+z§(n—2j + 1)

c
frn(x) = Ny, exp sza:j+§ Z z; — x;
|

1<1<j<n




n particle eigenstates with momentum p

Eigenstate of the photon number and momentum operators
N [adi@ota) P =1 [ dedl(@)sala)

N |n,p) = n|n,p)
Pn,p) =np|n,p)

These states are not localized solitons

(n,p|l () In,p) =0




The quantum soliton state (Lai e Haus 1989 )

Soliton state

The field expectation gB Is the classical soliton

(Ws| @ [tbs) = ¥s(z, 1)
Ys(x,t) solution of classical nonlinear Schrodinger equation.

Time-dependent solution of the linear quantum Schrodinger

) =Y an [ 9n(p) In.pit) dp

> lanl* =1 /Ign(p)Ide =1

n



The quantum soliton state (simple)

Two parameters:
m o gives number of bosons ng and phase, |ag|? = ng
m Ap momentum spread

At t = 0 we have

) o127 s/l D) CAp2,2
(¢S|¢|¢S):Zn| 0l 0 2( +1)|c|1/zsech[%(n—|—%)|c|:ﬁ]e Ap

n!

Classical limit

When ng = |ag|? >> 1 and for Ap — 0 we have

<?,bs| QB !%) = ws(ﬂjp t) = Ny 2|C|S€Ch (’C|1/2noaj)



Position and momentum fluctations

Position operator

A

X = /a:ng(at)gb(a:) dz| N~ with [X, P] =1

Classical soliton Quantum ng = 50, Ap = 100

One finds
(AP?)2(noAp)?

AX%)> L L ANp? 2
< ) 4A'p2n(2)+ p




Simulate the Quantum NLS?

We want to numerically validate the quantum spreading.
Phase-space approach: the Positive P-rapresentation

Positive Glauber-Sudarshan P-rapresentation

Map a nonlinear field theory to c-number
stochastic equations (Sudarshan 1963;
Glauber 1963, Drummond and Gardiner
1980)

m One expands the density matrix p in two sets of coherent
states spanned by complex parameters o and 3.

p:/P(""m 3|y HP)

m A Fokker-Planck equation for probability distribution
m An equivalent It6 stochastic differential equations for
c-numbers: nonlinearitv introduce noise terms.




Example of use of the Positive P-rapresentation

m Harmonic Oscillator H = Awa'a equivalent to the
stochastic equation

do
— =
dt
2 o .
m Nonlinear Harmonic Oscillator H;,; = hQ"’aT 2 is

equivalent to the coupled stochastic (notice: two c-numbers
for any ladded operator)

da —ka? B+ 1/rak(t)

dt
dg

= =k B — /i BEa(1)




Stochastic Partial Differential Equations

The Fokker-Planck equation is equivalent to two coupled fields
lto SDE ¢ and 1. The quantum NLS Hamiltonian

= [ dr (3.0 +cd16100)
One has the corresponding Stochastic Differential Equations

By = —10%) — 120 + Vick(t, 1)
O = 1074 + 12cPprp® + Vv —1c€y(t, )Y

Classical limit

¢ — 0 (no quantum noise), and 1) = ¢* and one obtains the
classical NLS

101 = — gy + QC’wa




Stochastic Runge Kutta Pseudospectral Algorithm

We solve numerically the stochastic nonlinear partial
differential equation

m We discretize the spatial variable z

m We adopt a pseudospectral approach for derivatives
(PDE—ODE)

m We adopt a second-order stochastic Runge Kutta
algorithm (u = (¢, 1)) with the Itd rule dW? = dt

Ukl = ug + S+ L2
F = dtD(uk) + S(Uk) dW;
Fo = dtD(uk + thl) + S(uk + thl) dWs

where D(u) = —¢.q + cp?1)... is the deterministic part,
and S = Vico following the coherent state expansion.




Simulation of the quantum soliton (1/2)

m Initial condition for the exact quantum soliton (Lai and
Haus theory)

m Average over disorder realization
m We have two parameters:
no determining the number of photons, which fixes the
strength of quantum noise

Ap the momentum spread of the photon states (here
Ap = 10)

& D m 7 pos'\{\on\l\

Classical-like evolution ng = 1000 Quantum evolution ng = 10



Simulation of the quantum soliton (2/2)

For a fixed momentum spread, we can change the number of
photons to transit from classical to quantum (Ap = 100).

nog — 50 nog — 100 nog — 1000

Low-particle number solitons

Low-particle number solitons exists but are delocalized!




Do quantum soliton
evaporate ?




Hawking radiation from black holes

Nature, 1974

Al ¢’ ubgab : O

Black hole explosions?

value of the number oper iy
<0 BB 0> = T af

The spectrum of a quantized field in the black hole metrics
(Schwarzschild solution) is blackbody with temperature

of
the origin and out

k¢ 1227 x 10% kg
"~ 8mGMkp - M

K=6.169 x 108 K x Mo
M

—]_ UV VISIBLE INFRARED
Vmax = 1 X 58.8 GHz K N
T u-
b 82 < Classical theory {5000 K}
Amaz = — = ———— 75 = 15.9027, o
Ty 4.9651 ;
i g
]
Black hole classifications g 8
Class Mass Size E
g 4
Supermassive black hole ~10%-10"° Mg, = ~0.001—400 AU E
Intermediate-mass black hole ~10°% Msun ~10% km = Reartn 2
Stellar black hole ~10 Msyn ~30 km «Interstellar»
o 4
Micro black hole up to ~Myo0n up to ~0.1 mm o o5 ; :I..I5 2' 25 a m OVI e

Wavelength {um}




Black holes are solitons

PA K] STAH L‘Jt‘...__s'L# Volume 61B, number 4

SCIENTISTS OF P -Mi 1STAM We remark that exact classical Schwarzschild-like solutions to Einstein’s (and possibly f gravity) equations provide
FI. ABDUS SALAM examples of realistic solitons.

Under the broadest definition, any non-trivial solu-
tion to a system of classical non-linear equations, which
is confined to a finite region of space and which carries
a finite energy, may be considered a soliton. The pro-
blem is to discover to what extent such classical ob-
jects can approximate to the quantum systems en-
countered in particle physics. Are they stable? What
conserved quantities can be associated with them? How
do they interact with “ordinary” particles described
by quantized fields?

PHYSICS LETTERS 12 April 1976

BLACK HOLES AS SOLITONS

A.SALAM

International Centre for Theoretical Physics, Trieste, Italy,
and Imperial College, London, England

and

J.STRATHDEE

International Centre for Theoretical Physics, Trieste, Italy

‘Received 2 February 1976

Black holes are solitons of the

Einstein-Hilbert equations ...

Black holes evaporate ....

Do all kinds of solitons evaporates?

Temperature of an optical soliton ?




Quantum soliton evaporation

10P Publishing

@ CrossMark

OPEN ACCESS
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. Phys. Commun. 2(2018) 055016
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Sine-Gordon soliton as a model for Hawking radiation of moving
black holes and quantum soliton evaporation

Leone Di Mauro Villari'~, Giulia Marcucci* ©, Maria Chiara Braidotti' and Claudio Conti*’

https://doi.org/10.1088,/2399-6528 faac340

PHYSICAL REVIEW A 98, 043859 (2018)

Quantum soliton evaporation
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More complex,
nonlinear and quantum curiosity?

 Talks by Stefano and Arno Mussot
* Poster by Giulia

www.newcomplexlight.org




