Super-Duper Ising Machine by a Single SLM

Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultra-fast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagnetic-like phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.

D. Pierangeli, G. Marcucci, C. Conti in ArXiv:1905.11548 and Phys. Rev. Lett. 122, 213902 (2019)

See also

Quantum Gates by TensorFlow and Reservoir Computing

Novel machine learning computational tools open new perspectives for quantum information systems. Here we adopt the open-source programming library TensorFlowTM to design multi-level quantum gates including a computing reservoir represented by a random unitary matrix. In optics, the reservoir is a disordered medium or a multimodal fiber. We show that trainable operators at the input and the readout enable to realize multi-level gates. We study single and qudit gates, including the
scaling properties of the algorithms with the size of the reservoir.

Quantum Reservoir Computing

G. Marcucci et al. in arXiv:1905.05264

See also