Theory of neuromorphic computing by waves

Machine-learning by rogue waves, dispersive shocks, and solitons

We study artificial neural networks with nonlinear waves as a computing reservoir. We discuss universality and the conditions to learn a dataset in terms of output channels and nonlinearity. A feed-forward three-layer model, with an encoding input layer, a wave layer, and a decoding readout, behaves as a conventional neural network in approximating mathematical functions, real-world datasets, and universal Boolean gates. The rank of the transmission matrix has a fundamental role in assessing the learning abilities of the wave. For a given set of training points, a threshold nonlinearity for universal interpolation exists. When considering the nonlinear Schroedinger equation, the use of highly nonlinear regimes implies that solitons, rogue, and shock waves do have a leading role in training and computing. Our results may enable the realization of novel machine learning devices by using diverse physical systems, as nonlinear optics, hydrodynamics, polaritonics, and Bose-Einstein condensates. The application of these concepts to photonics opens the way to a large class of accelerators and new computational paradigms. In complex wave systems, as multimodal fibers, integrated optical circuits, random, topological devices, and metasurfaces, nonlinear waves can be employed to perform computation and solve complex combinatorial optimization.

ArXiv:1912.07077

Simulating general relativity and non-commutative geometry by nonparaxial quantum fluids

We show that quantum fluids enable experimental analogs of relativistic orbital precession in the presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the Schroedinger equation. The non-commutating variables in the phase-space produce a precession and an acceleration of the orbital motion. The precession of the orbit is formally identical to the famous orbital precession of the perihelion of Mercury used by Einstein to validate the corrections of general relativity to Newton’s theory. In our case, the corrections are due to the modified uncertainty principle. The results may enable novel relativistic analogs in the laboratory, also including sub Planckian phenomenology.

https://iopscience.iop.org/article/10.1088/1367-2630/ab5da8

Controlling rogue waves and soliton gases

Topological control of extreme waves

From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, transitions between extreme waves are allowed. However, these have never been experimentally observed because control strategies are still missing. We introduce the new concept of topological control based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions through Riemann theta functions. We demonstrate the concept experimentally by reporting observations of supervised transitions between waves with different genera. Considering the box problem in a focusing photorefractive medium, we tailor the time-dependent nonlinearity and dispersion to explore each region in the state diagram of the nonlinear wave propagation. Our result is the first realization of topological control of nonlinear waves. This new technique casts light on shock and rogue waves generation and can be extended to other nonlinear phenomena.

Nature Communications volume 10, Article number: 5090 (2019)

Optical spatial shock waves in nonlocal nonlinear media, a review paper

Dispersive shock waves are fascinating phenomena occurring when nonlinearity overwhelms linear effects, such as dispersion and diffraction. Many features of shock waves are still under investigation, as the interplay with noninstantaneity in temporal pulses transmission and nonlocality in spatial beams propagation. Despite the rich and vast literature on nonlinear waves in optical Kerr media, spatial dispersive shock waves in nonlocal materials deserve further attention for their unconventional properties. Indeed, they have been investigated in colloidal matter, chemical physics and biophotonics, for sensing and control of extreme phenomena. Here we review the last developed theoretical models and recent optical experiments on spatial dispersive shock waves in nonlocal media. Moreover, we discuss observations in novel versatile materials relevant for soft matter and biology.

Review Paper in Advances in Physics X

Irreversible quantum mechanics and shock waves in highly nonlinear materials

Dispersive shock waves in thermal optical media belong to the third-order nonlinear phenomena, whose intrinsic irreversibility is described by time asymmetric quantum mechanics. Recent studies demonstrated that nonlocal wave breaking evolves in an exponentially decaying dynamics ruled by the reversed harmonic oscillator, namely, the simplest irreversible quantum system in the rigged Hilbert spaces. The generalization of this theory to more complex scenarios is still an open question. In this work, we use a thermal third-order medium with an unprecedented giant Kerr coefficient, the M-Cresol/Nylon mixed solution, to access an extremely-nonlinear highly-nonlocal regime and realize anisotropic shock waves. We prove that a superposition of the Gamow vectors in an ad hoc rigged Hilbert space describes the nonlinear beam propagation beyond the shock point. Specifically, the resulting rigged Hilbert space is a tensorial product between the reversed and the standard harmonic oscillators spaces. The anisotropy turns out from the interaction of trapping and antitrapping potentials in perpendicular directions. Our work opens the way to a complete description of novel intriguing shock phenomena, and those mediated by extreme nonlinearities.

Giulia Marcucci, Phillip Cala, Weining Man, Davide Pierangeli, Claudio Conti, Zhigang Chen in ArXiv:1909.04506

See also

Glauber oscillator

The math of irreversibility