Measure multidimensional complex and unknown polarization states in a single shot? All you need is machine learning!

Single-shot polarimetry of vector beams by supervised learning

States of light encoding multiple polarizations – vector beams – offer unique capabilities in metrology and communication. However, their practical application is limited by the lack of methods for measuring many polarizations in a scalable and compact way. Here we demonstrate polarimetry of vector beams in a single shot without any polarization optics. We map the beam polarization content into a spatial intensity distribution through multiple light scattering and exploit supervised learning for single-shot measurements of multiple polarizations. The method also allows us to classify beams with an unknown number of polarization modes, a functionality missing in conventional techniques. Our findings enable a fast and compact polarimeter for polarization-structured light, a universal tool that may radically impact optical devices for sensing, imaging, and computing.

Large-scale photonic natural language processing: ask your lasers if the movie is good!

Modern machine learning applications require huge artificial networks demanding in computational power and memory. Light-based platforms promise ultra-fast and energy-efficient hardware, which may help in realizing next-generation data processing devices. However, current photonic networks are limited by the number of input-output nodes that can be processed in a single shot. This restricted network capacity prevents their application to relevant large-scale problems such as natural language processing. Here, we realize a photonic processor with a capacity exceeding 1.5×1010 optical nodes, more than one order of magnitude larger than any previous implementation, which enables photonic large-scale text encoding and classification. By exploiting the full three-dimensional structure of the optical field propagating in free space, we overcome the interpolation threshold and reach the over-parametrized region of machine learning, a condition that allows high-performance natural language processing with a minimal fraction of training points. Our results provide a novel solution to scale-up light-driven computing and open the route to photonic language processing.

Experiments confirm the Non-Abelian Thouless pumping !

Sun et al. in Nature Physics recently reported the experimental observation of the Non-Abelian Thouless pumping by Brosco et al. in Physical Review A.

See also

The experiments in Nature Physics:

The News and Views by Brosco and Pilozzi :

The hyperspin machine: simulating QCD models and dimensional annealing

From condensed matter to quantum chromodynamics, multidimensional spins are a fundamental paradigm, with a pivotal role in combinatorial optimization and machine learning. Machines formed by coupled parametric oscillators can simulate spin models, but only for Ising or low-dimensional spins. Currently, machines implementing arbitrary dimensions remain a challenge. Here, we introduce and validate a hyperspin machine to simulate multidimensional continuous spin models. We realize high-dimensional spins by pumping groups of parametric oscillators, and study NP-hard graphs of hyperspins. The hyperspin machine can interpolate between different dimensions by tuning the coupling topology, a strategy that we call “dimensional annealing”. When interpolating between the XY and the Ising model, the dimensional annealing impressively increases the success probability compared to conventional Ising simulators. Hyperspin machines are a new computational model for combinatorial optimization. They can be realized by off-the-shelf hardware for ultrafast, large-scale applications in classical and quantum computing, condensed-matter physics, and fundamental studies.