MARGO project startup

Our new project within the Graphene Flagship ( Flagera Call JTC 2019) officially started !

MARGO stands for MAxillofacial bone Regeneration by 3D-printed laser-activated Graphene Oxide Scaffolds

MARGO is an exciting data-driven interdisciplinary research on our previous results on the Antibacterial coating and stem cell replication by Graphene Oxide, following our ERC PoC Project VANGUARD!

See also

MARGO project website

Scalable Spin-Glass Optical Simulator

Many developments in science and engineering depend on tackling complex optimizations on large scales. The challenge motivates an intense search for specific computing hardware that takes advantage of quantum features, nonlinear dynamics, or photonics. A paradigmatic optimization problem is to find low-energy states in classical spin systems with fully random interactions. To date, no alternative computing platform can address such spin-glass problems on a large scale. Here, we propose and realize an optical scalable spin-glass simulator based on spatial light modulation and multiple light scattering. By tailoring optical transmission through a disordered medium, we optically accelerate the computation of the ground state of large spin networks with all-to-all random couplings. Scaling of the operation time with the problem size demonstrates an optical advantage over conventional computing. Our results highlight optical vector-matrix multiplication as a tool for spin-glass problems and provide a general route toward large-scale computing that exploits speed, parallelism, and coherence of light.

Phys. Rev. Applied 15, 034087 (2021)

Two-flux tunable Aharonov-Bohm caging in a photonic lattice

We study the Aharonov-Bohm caging effect in a one-dimensional lattice of theta-shaped units defining a chain of interconnected plaquettes, each one threaded by two synthetic flux lines. In the proposed system, light trapping results from the destructive interference of waves propagating along three arms, this implies that the caging effect is tunable and it can be controlled by changing the tunnel couplings J. These features reflect on the diffraction pattern allowing to establish a clear connection between the lattice topology and the resulting AB interference.

arXiv:2102.06682