Optimal quantum key distribution networks: capacitance versus security

The rate and security of quantum communications between users placed at arbitrary points of a quantum communication network depend on the structure of the network, on its extension and on the nature of the communication channels. In this work we propose a strategy for the optimization of trusted-relays based networks that intertwines classical network approaches and quantum information theory. Specifically, by suitably defining a quantum communication efficiency functional, we identify the optimal quantum communication connections through the network by balancing security and the quantum communication rate. The optimized network is then constructed as the network of the maximal quantum communication efficiency connections and its performance is evaluated by studying the scaling of average properties as functions of the number of nodes and of the network spatial extension.


EIC Project HEISINGBERG launched !

The EU project HEISINGBERG has started!

This project is funded by the EIC-Pathfinder initiative of the European Innovation Council for innovative Quantum technologies.

The project leverages our Spatial Ising Machine (SPIM) device and aims at a new generation of programmable and quantum annealers.

For details, have a look at the HEISINGBERG website.

HEISINGBERG logo and website

See also

Localization in Quantum Field Theory for Inertial and Accelerated Observers

We study the problem of localization in Quantum Field Theory (QFT) from the point of view of inertial and accelerated experimenters. We consider the Newton-Wigner, the Algebraic Quantum Field Theory (AQFT), and the modal localization schemes, which are, respectively, based on the orthogonality condition for states localized in disjoint regions of space, on the algebraic approach to QFT and on the representation of single particles as positive frequency solution of the field equation. We show that only the AQFT scheme obeys causality and physical invariance under differentomorphisms. Then, we consider the nonrelativistic limit of quantum fields in the Rindler frame. We demonstrate the convergence between the AQFT and the modal scheme, and we show the emergence of the Born notion of localization of states and observables. Also, we study the scenario in which an experimenter prepares states over a background vacuum by means of nonrelativistic local operators, and another experimenter carries out nonrelativistic local measurements in a different region. We find that the independence between preparation of states and measurements is not guaranteed when both experimenters are accelerated and the background state is different from Rindler vacuum, or when one of the two experimenters is inertial.


Localization in Quantum Field Theory

We review the issue of localization in quantum field theory and detail the nonrelativistic limit. Three distinct localization schemes are examined: the Newton-Wigner, the algebraic quantum field theory, and the modal scheme. Among these, the algebraic quantum field theory provides a fundamental concept of localization, rooted in its axiomatic formulation. In contrast, the Newton-Wigner scheme draws inspiration from the Born interpretation, applying mainly to the nonrelativistic regime. The modal scheme, relying on the representation of single particles as positive frequency modes of the Klein-Gordon equation, is found to be incompatible with the algebraic quantum field theory localization.
This review delves into the distinctive features of each scheme, offering a comparative analysis. A specific focus is placed on the property of independence between state preparations and observable measurements in spacelike separated regions. Notably, the notion of localization in algebraic quantum field theory violates this independence due to the Reeh-Schlieder theorem. Drawing parallels with the quantum teleportation protocol, it is argued that causality remains unviolated. Additionally, we consider the nonrelativistic limit of quantum field theory, revealing the emergence of the Born scheme as the fundamental concept of localization. Consequently, the nonlocality associated with the Reeh-Schlieder theorem is shown to be suppressed under nonrelativistic conditions.


Nature Photonics on the Plenary at CLEO/EUROPE-EQEC 2023

Rachel Won in The power of light-driven computing highlights the plenary talk in CLEO/EUROPE-EQEC 2023 about photonic computing machines in Nature Photonics.

CLEO Europe 2023
Cleo Europe 2023

See https://www.cleoeurope.org/photos/