Two-flux tunable Aharonov-Bohm caging in a photonic lattice

We study the Aharonov-Bohm caging effect in a one-dimensional lattice of theta-shaped units defining a chain of interconnected plaquettes, each one threaded by two synthetic flux lines. In the proposed system, light trapping results from the destructive interference of waves propagating along three arms, this implies that the caging effect is tunable and it can be controlled by changing the tunnel couplings J. These features reflect on the diffraction pattern allowing to establish a clear connection between the lattice topology and the resulting AB interference.

arXiv:2102.06682

Topological nanophotonics and artificial neural networks

We propose the use of artificial neural networks to design and characterize photonic topological insulators. As a hallmark, the band structures of these systems show the key feature of the emergence of edge states, with energies lying within the energy gap of the bulk materials and localized at the boundary between regions of distinct topological invariants. We consider different structures such as one-dimensional photonic crystals, PT-symmetric chains and cylindrical systems and show how, through a machine learning application, one can identify the parameters of a complex topological insulator to obtain protected edge states at target frequencies. We show how artificial neural networks can be used to solve the long standing quest of inverse-problems solution and apply it to the cutting edge topic of topological nanophotonics.

Pilozzi et al 2020 Nanotechnology https://doi.org/10.1088/1361-6528/abd508

Non-abelian Thouless pumping in a photonic lattice

Non-abelian gauge fields emerge naturally in the description of adiabatically evolving quantum systems having degenerate levels. Here we show that they also play a role in Thouless pumping in the presence of degenerate bands. To this end we consider a photonic Lieb lattice having two degenerate non-dispersive modes and we show that, when the lattice parameters are slowly modulated, the propagation of the photons bear the fingerprints of the underlying non-abelian gauge structure. The non-dispersive character of the bands enables a high degree of control on photon propagation. Our work paves the way to the generation and detection of non-abelian gauge fields in photonic and optical lattices.

Non-abelian gauge fields lie at the very heart of many modern physical theories. We need new experimental routes and observables to disclose the importance of the Wilczek and Zee holonomy. We have shown that properly
designed photonic lattices enable the control of the beam evolution by non-commutative fields. These lattices may lead to the direct observation of the quantization of the displacement due to a non-abelian Chern number. This work can be extended in several directions, including nonlinear effects or considering the propagation of non-classical light in non-abelian lattices. Both these possibilities are unexplored so far and open several new questions concerning – for example – the effect of the non-abelian holonomy on entanglement or the impact of nonlinearity in breaking the hidden symmetries. Non-abelian topological photonics may stimulate further developments and applications for classical and quantum information and tests of fundamental physics.

Brosco, Pilozzi, Fazio, and Conti, in https://arxiv.org/abs/2010.15159