Direct Observation of Topological Protected Edge States in Slow-Light

We use split-ring resonators to demonstrate topologically protected edge states in the Su-Schieffer-Heeger model experimentally, but in a slow-light wave with the group velocity down to ∼0.1 of light speed in free space. A meta-material formed by an array of complementary split-ring resonators with controllable hopping strength enables the direct observation in transmission and reflection of non-trivial topology eigenstates, including a negative phase velocity regime. By rotating the texture orientation of the diatomic resonators, we can explore all the band structures and unveil the onset of the trivial and non-trivial protected eigenmodes at GHz frequencies, even in the presence of non-negligible loss. Our system realizes a fully tunable and controllable artificial optical system to study the interplay between topology and slow-light towards applications in quantum technologies

arXiv:2004.09282

Topological photonic crystal fibers and ring resonators

With an exact recursive approach, we study photonic crystal fibers and resonators with topological features induced by Aubry–Andre–Harper cladding modulation. We find nontrivial gaps and edge states at the interface between regions with different topological invariants. These structures show topological protection against symmetry-preserving local perturbations that do not close the gap and sustain strong field localization and energy concentration at a given radial distance. As topological light guiding and trapping devices, they may bring about many opportunities for both fundamentals and applications unachievable with conventional devices.

Laura Pilozzi et al. Optics Letters 45, 1415 (2020)

Controlling rogue waves and soliton gases

Topological control of extreme waves

From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, transitions between extreme waves are allowed. However, these have never been experimentally observed because control strategies are still missing. We introduce the new concept of topological control based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions through Riemann theta functions. We demonstrate the concept experimentally by reporting observations of supervised transitions between waves with different genera. Considering the box problem in a focusing photorefractive medium, we tailor the time-dependent nonlinearity and dispersion to explore each region in the state diagram of the nonlinear wave propagation. Our result is the first realization of topological control of nonlinear waves. This new technique casts light on shock and rogue waves generation and can be extended to other nonlinear phenomena.

Nature Communications volume 10, Article number: 5090 (2019)