Phase space machine learning for multi-particle event optimization in Gaussian boson sampling

We use neural networks to represent the characteristic function of many-body Gaussian states in the quantum phase space. By a pullback mechanism, we model transformations due to unitary operators as linear layers that can be cascaded to simulate complex multi-particle processes. We use the layered neural networks for non-classical light propagation in random interferometers, and compute boson pattern probabilities by automatic differentiation. We also demonstrate that multi-particle events in Gaussian boson sampling can be optimized by a proper design and training of the neural network weights. The results are potentially useful to the creation of new sources and complex circuits for quantum technologies.

https://arxiv.org/abs/2102.12142

Official code

Topological nanophotonics and artificial neural networks

We propose the use of artificial neural networks to design and characterize photonic topological insulators. As a hallmark, the band structures of these systems show the key feature of the emergence of edge states, with energies lying within the energy gap of the bulk materials and localized at the boundary between regions of distinct topological invariants. We consider different structures such as one-dimensional photonic crystals, PT-symmetric chains and cylindrical systems and show how, through a machine learning application, one can identify the parameters of a complex topological insulator to obtain protected edge states at target frequencies. We show how artificial neural networks can be used to solve the long standing quest of inverse-problems solution and apply it to the cutting edge topic of topological nanophotonics.

Pilozzi et al 2020 Nanotechnology https://doi.org/10.1088/1361-6528/abd508

Experiments on adiabatic evolution in Ising machines in Optica

Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and classical annealing methods but enforced by optical vector-matrix multiplications and scalable photonic technology.

https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-7-11-1535&id=442147

See also https://arxiv.org/abs/2005.08690

Deep learning, nonlinear optics, and physical unclonable keys for intrinsic security

https://www.degruyter.com/view/journals/nanoph/ahead-of-print/article-10.1515-nanoph-2020-0368/article-10.1515-nanoph-2020-0368.xml

Physical unclonable functions (PUFs) are complex physical objects that aim at overcoming the vulnerabilities of traditional cryptographic keys, promising a robust class of security primitives for different applications. Optical PUFs present advantages over traditional electronic realizations, namely, a stronger unclonability, but suffer from problems of reliability and weak unpredictability of the key. We here develop a two-step PUF generation strategy based on deep learning, which associates reliable keys verified against the National Institute of Standards and Technology (NIST) certification standards of true random generators for cryptography. The idea explored in this work is to decouple the design of the PUFs from the key generation and train a neural architecture to learn the mapping algorithm between the key and the PUF. We report experimental results with all-optical PUFs realized in silica aerogels and analyzed a population of 100 generated keys, each of 10,000 bit length. The key generated passed all tests required by the NIST standard, with proportion outcomes well beyond the NIST’s recommended threshold. The two-step key generation strategy studied in this work can be generalized to any PUF based on either optical or electronic implementations. It can help the design of robust PUFs for both secure authentications and encrypted communications.

Our “machine learning with nonlinear waves” paper featured in Physics!

Riding waves in Neuromorphic Computing, Marios Mattheakis highlights with a thoughtful viewpoint our recent paper in PRL on the artificial intelligence of nonlinear waves.