Photonic extreme learning machine by free-space optical propagation

Photonic brain-inspired platforms are emerging as novel analog computing devices, enabling fast and energy-efficient operations for machine learning. These artificial neural networks generally require tailored optical elements, such as integrated photonic circuits, engineered diffractive layers, nanophotonic materials, or time-delay schemes, which are challenging to train or stabilize. Here we present a neuromorphic photonic scheme – photonic extreme learning machines – that can be implemented simply by using an optical encoder and coherent wave propagation in free space. We realize the concept through spatial light modulation of a laser beam, with the far field that acts as feature mapping space. We experimentally demonstrated learning from data on various classification and regression tasks, achieving accuracies comparable to digital extreme learning machines. Our findings point out an optical machine learning device that is easy-to-train, energetically efficient, scalable and fabrication-constraint free. The scheme can be generalized to a plethora of photonic systems, opening the route to real-time neuromorphic processing of optical data.


Code for multilevel quantum gates now available on Github

We made available our Python and TensorFlow code about machine learning design of multilevel quantum gates with reservoir computing

GitHub Repository

See also

Phase space machine learning for multi-particle event optimization in Gaussian boson sampling

We use neural networks to represent the characteristic function of many-body Gaussian states in the quantum phase space. By a pullback mechanism, we model transformations due to unitary operators as linear layers that can be cascaded to simulate complex multi-particle processes. We use the layered neural networks for non-classical light propagation in random interferometers, and compute boson pattern probabilities by automatic differentiation. We also demonstrate that multi-particle events in Gaussian boson sampling can be optimized by a proper design and training of the neural network weights. The results are potentially useful to the creation of new sources and complex circuits for quantum technologies.

Official code

Topological nanophotonics and artificial neural networks

We propose the use of artificial neural networks to design and characterize photonic topological insulators. As a hallmark, the band structures of these systems show the key feature of the emergence of edge states, with energies lying within the energy gap of the bulk materials and localized at the boundary between regions of distinct topological invariants. We consider different structures such as one-dimensional photonic crystals, PT-symmetric chains and cylindrical systems and show how, through a machine learning application, one can identify the parameters of a complex topological insulator to obtain protected edge states at target frequencies. We show how artificial neural networks can be used to solve the long standing quest of inverse-problems solution and apply it to the cutting edge topic of topological nanophotonics.

Pilozzi et al 2020 Nanotechnology

Experiments on adiabatic evolution in Ising machines in Optica

Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and classical annealing methods but enforced by optical vector-matrix multiplications and scalable photonic technology.

See also