Simulating general relativity and non-commutative geometry by nonparaxial quantum fluids

We show that quantum fluids enable experimental analogs of relativistic orbital precession in the presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the Schroedinger equation. The non-commutating variables in the phase-space produce a precession and an acceleration of the orbital motion. The precession of the orbit is formally identical to the famous orbital precession of the perihelion of Mercury used by Einstein to validate the corrections of general relativity to Newton’s theory. In our case, the corrections are due to the modified uncertainty principle. The results may enable novel relativistic analogs in the laboratory, also including sub Planckian phenomenology.

https://iopscience.iop.org/article/10.1088/1367-2630/ab5da8

Couplings between time and orbital angular momentum in propagation-invariant ultrafast vortices

In any form of wave propagation, strong spatiotemporal coupling appears when non-elementary, three-dimensional wave-packets are composed by superimposing pure plane waves, or spontaneously generated by light-matter interaction and nonlinear processes. Ultrashort pulses with orbital angular momentum (OAM), or ultrashort vortices, furnish a critical paradigm in which the analysis of the spatiotemporal coupling in the form of temporal-OAM coupling can be carried out accurately by analytical tools. By generalizing and unifying previously reported results, we show that universal and spatially heterogeneous space-time correlations occur in propagation-invariant temporal pulses carrying OAM. In regions with high intensity, the pulse duration has a lower bound fixed by the topological charge of the vortex and such that the duration must increase with the topological charge. In regions with low intensity in the vicinity of the vortex, a large blue-shift of the carrier oscillations and an increase of the number of them is predicted for strongly twisted beams. We think that these very general findings highlight the existence of a structural coupling between space and time, which is relevant at low photon numbers in quantum optics, and also in the highly nonlinear process as the high-harmonics generated with twisted beams. These results have also applications as multi-level classical and quantum free-space or satellite, communications, spectroscopy, and high-harmonic generation.

Miguel A. Porras and C. Conti in arXiv:1911.1222

Optical spatial shock waves in nonlocal nonlinear media, a review paper

Dispersive shock waves are fascinating phenomena occurring when nonlinearity overwhelms linear effects, such as dispersion and diffraction. Many features of shock waves are still under investigation, as the interplay with noninstantaneity in temporal pulses transmission and nonlocality in spatial beams propagation. Despite the rich and vast literature on nonlinear waves in optical Kerr media, spatial dispersive shock waves in nonlocal materials deserve further attention for their unconventional properties. Indeed, they have been investigated in colloidal matter, chemical physics and biophotonics, for sensing and control of extreme phenomena. Here we review the last developed theoretical models and recent optical experiments on spatial dispersive shock waves in nonlocal media. Moreover, we discuss observations in novel versatile materials relevant for soft matter and biology.

Review Paper in Advances in Physics X

Multipolar terahertz spectroscopy by graphene plasmons

Terahertz absorption spectroscopy plays a key role in physical, chemical and biological systems as a powerful tool to identify molecular species through their rotational spectrum fingerprint. Owing to the sub-nanometer scale of molecules, radiation-matter coupling is typically dominated by dipolar interaction. Here we show that multipolar rotational spectroscopy of molecules in proximity of localized graphene structures can be accessed through the extraordinary enhancement of their multipolar transitions provided by terahertz plasmons. In particular, specializing our calculations to homonuclear diatomic molecules, we demonstrate that a micron-sized graphene ring with a nano-hole at the core combines a strong near-field enhancement and an inherently pronounced field localization enabling the enhancement of the dipole-forbidden terahertz absorption cross-section of H+2H2+ by 8 orders of magnitude. Our results shed light on the strong potential offered by nano-structured graphene as a robust and electrically tunable platform for multipolar terahertz absorption spectroscopy at the nanoscale.

A. Ciattoni, C. Conti, and A. Marini in Communication Physics

Irreversible quantum mechanics and shock waves in highly nonlinear materials

Dispersive shock waves in thermal optical media belong to the third-order nonlinear phenomena, whose intrinsic irreversibility is described by time asymmetric quantum mechanics. Recent studies demonstrated that nonlocal wave breaking evolves in an exponentially decaying dynamics ruled by the reversed harmonic oscillator, namely, the simplest irreversible quantum system in the rigged Hilbert spaces. The generalization of this theory to more complex scenarios is still an open question. In this work, we use a thermal third-order medium with an unprecedented giant Kerr coefficient, the M-Cresol/Nylon mixed solution, to access an extremely-nonlinear highly-nonlocal regime and realize anisotropic shock waves. We prove that a superposition of the Gamow vectors in an ad hoc rigged Hilbert space describes the nonlinear beam propagation beyond the shock point. Specifically, the resulting rigged Hilbert space is a tensorial product between the reversed and the standard harmonic oscillators spaces. The anisotropy turns out from the interaction of trapping and antitrapping potentials in perpendicular directions. Our work opens the way to a complete description of novel intriguing shock phenomena, and those mediated by extreme nonlinearities.

Giulia Marcucci, Phillip Cala, Weining Man, Davide Pierangeli, Claudio Conti, Zhigang Chen in ArXiv:1909.04506

See also

Glauber oscillator

The math of irreversibility