Our Replica Symmetry Breaking experiments in the motivations of the Nobel Prize to Giorgio Parisi !!!

The main goal of the Light and Complexity project (ERC StG 2007) was to observe replica symmetry breaking (a process predicted by Giorgio Parisi) in random lasers and nonlinear waves.

After our successful experiments in 2015 and 2017, the results are now cited in the motivations of the 2021 Nobel Prize to Giorgio Parisi !

https://www.nobelprize.org/uploads/2021/10/sciback_fy_en_21.pdf

See also

Photonic extreme learning machine by free-space optical propagation

Photonic brain-inspired platforms are emerging as novel analog computing devices, enabling fast and energy-efficient operations for machine learning. These artificial neural networks generally require tailored optical elements, such as integrated photonic circuits, engineered diffractive layers, nanophotonic materials, or time-delay schemes, which are challenging to train or stabilize. Here we present a neuromorphic photonic scheme – photonic extreme learning machines – that can be implemented simply by using an optical encoder and coherent wave propagation in free space. We realize the concept through spatial light modulation of a laser beam, with the far field that acts as feature mapping space. We experimentally demonstrated learning from data on various classification and regression tasks, achieving accuracies comparable to digital extreme learning machines. Our findings point out an optical machine learning device that is easy-to-train, energetically efficient, scalable and fabrication-constraint free. The scheme can be generalized to a plethora of photonic systems, opening the route to real-time neuromorphic processing of optical data.

arXiv:2105.12123

Photonics Research 9, 1446 (2021)

Scalable Spin-Glass Optical Simulator

Many developments in science and engineering depend on tackling complex optimizations on large scales. The challenge motivates an intense search for specific computing hardware that takes advantage of quantum features, nonlinear dynamics, or photonics. A paradigmatic optimization problem is to find low-energy states in classical spin systems with fully random interactions. To date, no alternative computing platform can address such spin-glass problems on a large scale. Here, we propose and realize an optical scalable spin-glass simulator based on spatial light modulation and multiple light scattering. By tailoring optical transmission through a disordered medium, we optically accelerate the computation of the ground state of large spin networks with all-to-all random couplings. Scaling of the operation time with the problem size demonstrates an optical advantage over conventional computing. Our results highlight optical vector-matrix multiplication as a tool for spin-glass problems and provide a general route toward large-scale computing that exploits speed, parallelism, and coherence of light.

Phys. Rev. Applied 15, 034087 (2021)