Adiabatic evolution on a spatial-photonic Ising machine

Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and enforced by optical vector-matrix multiplications and scalable photonic technology.

arXiv:2005.08690

See also Super Duper Ising Machine

QUANTERA project QUOMPLEX funded!

The project QUOMPLEX authored by Mehul Malik (Coordinator), Pepijn Pinske and Claudio Conti is among the 26 excellent international proposals in the field of quantum technologies research recommended for funding in the QUANTERA call 2017, the first step of the Quantum Technologies flagship.

QUOMPLEX aims at harnessing random media, multi-modal propagation and machine learning for novel compact multi-level quantum gates.

QuantERA in Cordis (grant number 731473)

Website of the Quomplex Project

Stay tuned!