The Artificial Intelligence of Waves

In a paper published in Physical Review Letters, with title

Theory of Neuromorphic Computing by Waves: Machine Learning by Rogue Waves, Dispersive Shocks and Solitons

we study artificial neural networks with nonlinear waves as a computing reservoir. We discuss universality and the conditions to learn a dataset in terms of output channels and nonlinearity. A feed-forward three-layered model, with an encoding input layer, a wave layer, and a decoding readout, behaves as a conventional neural network in approximating mathematical functions, real-world datasets, and universal Boolean gates.
The rank of the transmission matrix has a fundamental role in assessing the learning abilities of the wave.
For a given set of training points, a threshold nonlinearity for universal interpolation exists. When considering the nonlinear Schrödinger equation, the use of highly nonlinear regimes implies that solitons, rogue, and shock waves do have a leading role in training and computing. Our results may enable the realization of novel machine learning devices by using diverse physical systems, as nonlinear optics, hydrodynamics, polaritonics, and Bose-Einstein condensates. The application of these concepts to photonics opens the way to
a large class of accelerators and new computational paradigms. In complex wave systems, as multimodal fibers, integrated optical circuits, random, topological devices, and metasurfaces, nonlinear waves can be employed to perform computation and solve complex combinatorial optimization.

The paper was selected as Editors’Suggestion and Featured in Physics

See also

Adiabatic evolution on a spatial-photonic Ising machine

Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and enforced by optical vector-matrix multiplications and scalable photonic technology.


See also Super Duper Ising Machine

QUANTERA project QUOMPLEX funded!

The project QUOMPLEX authored by Mehul Malik (Coordinator), Pepijn Pinske and Claudio Conti is among the 26 excellent international proposals in the field of quantum technologies research recommended for funding in the QUANTERA call 2017, the first step of the Quantum Technologies flagship.

QUOMPLEX aims at harnessing random media, multi-modal propagation and machine learning for novel compact multi-level quantum gates.

QuantERA in Cordis (grant number 731473)

Website of the Quomplex Project

Stay tuned!