Theory of neuromorphic computing by waves

Machine-learning by rogue waves, dispersive shocks, and solitons

We study artificial neural networks with nonlinear waves as a computing reservoir. We discuss universality and the conditions to learn a dataset in terms of output channels and nonlinearity. A feed-forward three-layer model, with an encoding input layer, a wave layer, and a decoding readout, behaves as a conventional neural network in approximating mathematical functions, real-world datasets, and universal Boolean gates. The rank of the transmission matrix has a fundamental role in assessing the learning abilities of the wave. For a given set of training points, a threshold nonlinearity for universal interpolation exists. When considering the nonlinear Schroedinger equation, the use of highly nonlinear regimes implies that solitons, rogue, and shock waves do have a leading role in training and computing. Our results may enable the realization of novel machine learning devices by using diverse physical systems, as nonlinear optics, hydrodynamics, polaritonics, and Bose-Einstein condensates. The application of these concepts to photonics opens the way to a large class of accelerators and new computational paradigms. In complex wave systems, as multimodal fibers, integrated optical circuits, random, topological devices, and metasurfaces, nonlinear waves can be employed to perform computation and solve complex combinatorial optimization.


PELM Project Kick off, 10 october 2019


The Kick off meeting of the PELM project will be held on October 10th and 11th starting from 11.00 a.m. in room Aula Garda, Polo Scientifico e Tecnologico, Fabio Ferrari (Povo 1) 

We are happy to announce the event that officially marks the start of the PELM project “Photonic Extreme Learning Machine: from neuromorphic computing to universal optical interpolant, strain gauge sensor and cancer morphodynamic monitor”, programmed on 10th and 11th of October, 2019. PELM aims at demonstrating machine learning photonic devices. Within a single neuromorphic computing architecture, different platforms are specialized to given tasks by their specific characteristics.

In the meeting, the involved team of the University of Trento, Sapienza University of Rome, Scuola Normale Superiore of Pisa, Università Cattolica of Milan and CNR-INO of Neaples, will talk about the project, the objectives and the working methodology to achieve together the desired results. 

For more info please see the agenda 

Our Ising machine in Laser Focus World

August 2019 issue of Laser Focus World reports on our Ising machine in a featured article

Researchers have built the largest photonic Ising machine to date – an optical processor for solving difficult optimization problems by modelin interacting spins via a spatially varying light field

Other web and press release on our Ising machine

Le Scienze : la piu’ grande macchina di calcolo con la luce

Repubblica : la macchina che risolve i problemi alla velocita’ della luce

See also

Super-Duper Ising machine