Our Ising machine in Laser Focus World

August 2019 issue of Laser Focus World reports on our Ising machine in a featured article

Researchers have built the largest photonic Ising machine to date – an optical processor for solving difficult optimization problems by modelin interacting spins via a spatially varying light field

Other web and press release on our Ising machine

Le Scienze : la piu’ grande macchina di calcolo con la luce

Repubblica : la macchina che risolve i problemi alla velocita’ della luce

https://arstechnica.com/science/2019/06/expanding-and-focusing-beam-of-light-makes-parallel-computer/

See also

Super-Duper Ising machine

Super-Duper Ising Machine featured in Physics!

New hardware for solving NP-complete problems is of paramount importance in the modern theory of complexity and computation. In the new era of machine learning and quantum computing, many groups are working for realizing “annealing devices.” Ising machines are a special class that finds the minima of spin-glass Hamiltonians, as Sherrington-Kirkpatrick and Mattis models. Our recent work on a new simple and scalable Ising machine [Phys.Rev.Lett. 122, 213902(2019) and arXiv:1905.11548] has been featured in Physics.

Photonic Ising Machines Go Big: A new optical processor for solving hard optimization problems breaks previous size records and is based on a highly scalable technology”

See also

Super-Duper Ising Machine by a Single SLM

Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultra-fast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagnetic-like phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.

D. Pierangeli, G. Marcucci, C. Conti in ArXiv:1905.11548 and Phys. Rev. Lett. 122, 213902 (2019)

See also

Quantum Gates by TensorFlow and Reservoir Computing

Novel machine learning computational tools open new perspectives for quantum information systems. Here we adopt the open-source programming library TensorFlowTM to design multi-level quantum gates including a computing reservoir represented by a random unitary matrix. In optics, the reservoir is a disordered medium or a multimodal fiber. We show that trainable operators at the input and the readout enable to realize multi-level gates. We study single and qudit gates, including the
scaling properties of the algorithms with the size of the reservoir.

Quantum Reservoir Computing

G. Marcucci et al. in arXiv:1905.05264

See also