Dark matter condensates as highly nonlocal solitons: instability in the Schwarzschild metric and laboratory analog

Theories on the bosonic nature of dark matter are a promising alternative to the cold dark matter model. Here we consider a dark matter halo in the state of a Bose-Einstein condensate, subject to the gravitation of a black hole. In the low energy limit, we bring together the general relativity in the Schwarzschild metric and the quantum description of the Bose-Einstein condensate. The model is solvable in the Fermi normal coordinates with the so called highly nonlocal approximation and describes tidal deformations in the condensate wave function. The black hole deforms the localized condensate until the attraction of the compact object overcomes the self-gravitation and destabilizes the solitonic dark matter. Moreover, the model can be implemented as a gravitational analog in the laboratory; the time-dependent potential generated by the galactic black hole can be mimicked by an optical trap acting on a conventional condensate. The results open the way to new laboratory simulators for quantum gravitational effects.


Biosensing with free space whispering gallery mode microlasers

Highly accurate biosensors for few or single molecule detection play a central role in numerous key fields, such as healthcare and environmental monitoring. In the last decade, laser biosensors have been investigated as proofs of concept, and several technologies have been proposed. We here propose a demonstration of polymeric whispering gallery microlasers as biosensors for detecting small amounts of proteins down to 400 pg. They have the advantage of working in free space without any need for waveguiding for input excitation or output signal detection. The photonic microsensors can be easily patterned on microscope slides and operate in air and solution. We estimate the limit of detection up to 148 nm/RIU for three different protein dispersions. In addition, the sensing ability of passive spherical resonators in the presence of dielectric nanoparticles that mimic proteins is described by massive ab initio numerical simulations.


Observation of terahertz transition from Fano resonances to bound states in the continuum

Bound states in the continuum (BIC) in metamaterials have recently attracted attention for their promising applications in photonics. Here, we investigate the transition from Fano resonances to BIC, at terahertz (THz) frequencies, of a one-dimensional photonic crystal slab made of rectangular dielectric rods. Simulations performed by an analytical exact solution of the Maxwell equations showed that symmetry-protected, high-quality factor (Q), BIC emerge at normal incidence. For non-normal incidence, BIC couple with the freely propagating waves and appear in the scattering field as a Fano resonance. Simulations were verified by realizing the photonic crystal slab by 3D-printing technique. THz time-domain spectroscopy measurements as a function of the incidence angle matched the simulation to good accuracy and confirmed the evolution of Fano resonances to high-Q resonances typical of BIC. These results point out the design of highly sensitive and low-cost THz devices for sensing for a wide range of applications.