MARGO project startup

Our new project within the Graphene Flagship ( Flagera Call JTC 2019) officially started !

MARGO stands for MAxillofacial bone Regeneration by 3D-printed laser-activated Graphene Oxide Scaffolds

MARGO is an exciting data-driven interdisciplinary research on our previous results on the Antibacterial coating and stem cell replication by Graphene Oxide, following our ERC PoC Project VANGUARD!

See also

MARGO project website

Minimizing large-scale Ising models with disorder and light: the “classical-optics advantage”

Since the 80s we know how to build optical neural networks that simulate the Hopfield model, spin-glasses, and related. New developments in optical technology and light control in random media clearly demonstrate the “optical advantage,” even while limiting to the good old classical physics.

Scalable spin-glass optical simulator

Many developments in science and engineering depend on tackling complex optimizations on large scales. The challenge motivates an intense search for specific computing hardware that takes advantage of quantum features, stochastic elements, nonlinear dissipative dynamics, in-memory operations, or photonics. A paradigmatic optimization problem is finding low-energy states in classical spin systems with fully-random interactions. To date, no alternative computing platform can address such spin-glass problems on a large scale. Here we propose and realize an optical scalable spin-glass simulator based on spatial light modulation and multiple light scattering. By tailoring optical transmission through a disordered medium, we optically accelerate the computation of the ground state of large spin networks with all-to-all random couplings. Scaling of the operation time with the problem size demonstrates an optical advantage over conventional computing. Our results provide a general route towards large-scale computing that exploits speed, parallelism, and coherence of light.


Adiabatic evolution on a spatial-photonic Ising machine

Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and enforced by optical vector-matrix multiplications and scalable photonic technology.


See also Super Duper Ising Machine

Optimal noise in Ising machines

Ising machines are novel computing devices for the energy minimization of Ising models. These combinatorial optimization problems are of paramount importance for science and technology, but remain difficult to tackle on large scale by conventional electronics. Recently, various photonics-based Ising machines demonstrated ultra-fast computing of Ising ground state by data processing through multiple temporal or spatial optical channels. Experimental noise acts as a detrimental effect in many of these devices. On the contrary, we here demonstrate that an optimal noise level enhances the performance of spatial-photonic Ising machines on frustrated spin problems. By controlling the error rate at the detection, we introduce a noisy-feedback mechanism in an Ising machine based on spatial light modulation. We investigate the device performance on systems with hundreds of individually-addressable spins with all-to-all couplings and we found an increased success probability at a specific noise level. The optimal noise amplitude depends on graph properties and size, thus indicating an additional tunable parameter helpful in exploring complex energy landscapes and in avoiding trapping into local minima. The result points out noise as a resource for optical computing. This concept, which also holds in different nanophotonic neural networks, may be crucial in developing novel hardware with optics-enabled parallel architecture for large-scale optimizations.


Published in Nanophotonics

Noise-enhanced spatial-photonic Ising machine

See also

Large scale Ising machine by a spatial light modulator

Topological Control of Extreme Waves

From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, new theories state that transitions between extreme waves are allowed. However, these have never been experimentally observed because of the lack of control strategies. We introduce a new concept of nonlinear wave topological control, based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions by the Riemann theta function. We prove it experimentally by reporting the first observation of supervised transitions between extreme waves with different genera, like the continuous transition from dispersive shock to rogue waves. Specifically, we use a parametric time-dependent nonlinearity to shape the asymptotic wave genus. We consider the box problem in a focusing Kerr-like photorefractive medium and tailor time-dependent propagation coefficients, as nonlinearity and dispersion, to explore each region in the state-diagram and include all the dynamic phases in the nonlinear wave propagation. Our result is the first example of the topological control of integrable nonlinear waves. This new technique casts light on dispersive shock waves and rogue wave generation and can be extended to other nonlinear phenomena, from classical to quantum ones. The outcome is not only important for fundamental studies and control of extreme nonlinear waves, but can be also applied to spatial beam shaping for microscopy, medicine, and spectroscopy, and to the broadband coherent light generation.

Marcucci et al. in ArXiv:1908.05212