Measure multidimensional complex and unknown polarization states in a single shot? All you need is machine learning!

Single-shot polarimetry of vector beams by supervised learning

States of light encoding multiple polarizations – vector beams – offer unique capabilities in metrology and communication. However, their practical application is limited by the lack of methods for measuring many polarizations in a scalable and compact way. Here we demonstrate polarimetry of vector beams in a single shot without any polarization optics. We map the beam polarization content into a spatial intensity distribution through multiple light scattering and exploit supervised learning for single-shot measurements of multiple polarizations. The method also allows us to classify beams with an unknown number of polarization modes, a functionality missing in conventional techniques. Our findings enable a fast and compact polarimeter for polarization-structured light, a universal tool that may radically impact optical devices for sensing, imaging, and computing.

Our Replica Symmetry Breaking experiments in the motivations of the Nobel Prize to Giorgio Parisi !!!

The main goal of the Light and Complexity project (ERC StG 2007) was to observe replica symmetry breaking (a process predicted by Giorgio Parisi) in random lasers and nonlinear waves.

After our successful experiments in 2015 and 2017, the results are now cited in the motivations of the 2021 Nobel Prize to Giorgio Parisi !

See also