Topological Control of Extreme Waves

From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, new theories state that transitions between extreme waves are allowed. However, these have never been experimentally observed because of the lack of control strategies. We introduce a new concept of nonlinear wave topological control, based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions by the Riemann theta function. We prove it experimentally by reporting the first observation of supervised transitions between extreme waves with different genera, like the continuous transition from dispersive shock to rogue waves. Specifically, we use a parametric time-dependent nonlinearity to shape the asymptotic wave genus. We consider the box problem in a focusing Kerr-like photorefractive medium and tailor time-dependent propagation coefficients, as nonlinearity and dispersion, to explore each region in the state-diagram and include all the dynamic phases in the nonlinear wave propagation. Our result is the first example of the topological control of integrable nonlinear waves. This new technique casts light on dispersive shock waves and rogue wave generation and can be extended to other nonlinear phenomena, from classical to quantum ones. The outcome is not only important for fundamental studies and control of extreme nonlinear waves, but can be also applied to spatial beam shaping for microscopy, medicine, and spectroscopy, and to the broadband coherent light generation.

Marcucci et al. in ArXiv:1908.05212

Our Ising machine in Laser Focus World

August 2019 issue of Laser Focus World reports on our Ising machine in a featured article

Researchers have built the largest photonic Ising machine to date – an optical processor for solving difficult optimization problems by modelin interacting spins via a spatially varying light field

Other web and press release on our Ising machine

Le Scienze : la piu’ grande macchina di calcolo con la luce

Repubblica : la macchina che risolve i problemi alla velocita’ della luce

https://arstechnica.com/science/2019/06/expanding-and-focusing-beam-of-light-makes-parallel-computer/

See also

Super-Duper Ising machine

Optical Spatial Shock Waves in Nonlocal Nonlinear Media

Dispersive shock waves are fascinating phenomena occurring when nonlinearity overwhelms linear effects, such as dispersion and diffraction. Many features of shock waves are still under investigation, as the interplay with noninstantaneity in temporal pulses transmission and nonlocality in spatial beams propagation. Despite the rich and vast literature on nonlinear waves in optical Kerr media, spatial dispersive shock waves in nonlocal materials deserve further attention for their unconventional properties. Indeed, they have been investigated in colloidal matter, chemical physics and biophotonics, for sensing and control of extreme phenomena.
Here we review the last developed theoretical models and recent optical experiments on spatial dispersive shock waves in nonlocal media. Moreover, we discuss observations in novel versatile materials relevant for soft matter and biology.

Giulia Marcucci et al. in arXiv:1907.02823

See also https://giuliasnonlinearworld.wordpress.com/2019/07/08/dswreview/

Super-Duper Ising Machine by a Single SLM

Quantum and classical physics can be used for mathematical computations that are hard to tackle by conventional electronics. Very recently, optical Ising machines have been demonstrated for computing the minima of spin Hamiltonians, paving the way to new ultra-fast hardware for machine learning. However, the proposed systems are either tricky to scale or involve a limited number of spins. We design and experimentally demonstrate a large-scale optical Ising machine based on a simple setup with a spatial light modulator. By encoding the spin variables in a binary phase modulation of the field, we show that light propagation can be tailored to minimize an Ising Hamiltonian with spin couplings set by input amplitude modulation and a feedback scheme. We realize configurations with thousands of spins that settle in the ground state in a low-temperature ferromagnetic-like phase with all-to-all and tunable pairwise interactions. Our results open the route to classical and quantum photonic Ising machines that exploit light spatial degrees of freedom for parallel processing of a vast number of spins with programmable couplings.

D. Pierangeli, G. Marcucci, C. Conti in ArXiv:1905.11548 and Phys. Rev. Lett. 122, 213902 (2019)

See also

Deep learning, living, random, optical, and – maybe – useful

In a recent paper, we demonstrated an optical deep neural network with a real living piece of brain tumor (a 3D “tumour model”). We think this is the first example of a hybrid living/photonic hardware: a sort of artificially intelligent device performing optical functions and detecting tumour morphodynamics (including the effect of chemotherapy)

Deep optical neural network by living tumour brain cells

Abstract: The new era of artificial intelligence demands large-scale ultrafast hardware for machine learning. Optical artificial neural networks process classical and quantum information at the speed of light, 
and are compatible with silicon technology, but lack scalability and need expensive manufacturing of many computational layers. New paradigms, as reservoir computing and the extreme learning machine, suggest that disordered and biological materials may realize artificial neural networks with thousands of computational nodes trained only at the input and at the readout. Here we employ biological complex systems, i.e., living three-dimensional tumour brain models, and demonstrate a random neural network (RNN) trained to detect tumour morphodynamics via
image transmission. The RNN, with the tumour spheroid 19 as a three-dimensional deep computational reservoir, performs programmed optical functions and detects cancer morphodynamics from laser-induced hyperthermia inaccessible by optical imaging. Moreover, the RNN quantifies the effect of chemotherapy inhibiting tumour growth. We realize a non-invasive smart probe for cytotoxicity assay, which is at least one order of magnitude more sensitive with respect to conventional imaging. Our random and hybrid photonic/living system is a novel artificial machine for computing and for the real-time investigation of tumour dynamics.

Authors: D. Pierangeli, V. Palmieri, G. Marcucci, C. Moriconi, G. Perini, M. De Spirito, M. Papi, C. Conti

https://arxiv.org/abs/1812.09311