The solution to energy demanding artificial intelligence : optical neural networks with solar cells

https://www.researching.cn/articles/OJ930a39ae0105db58

https://opg.optica.org/prj/abstract.cfm?doi=10.1364/PRJ.542564

Optical neural networks (ONNs) are a class of emerging computing platforms that leverage the properties of light to perform ultra-fast computations with ultra-low energy consumption. ONNs often use CCD cameras as the output layer. In this work, we propose the use of perovskite solar cells as a promising alternative to imaging cameras in ONN designs. Solar cells are ubiquitous, versatile, highly customizable, and can be fabricated quickly in laboratories. Their large acquisition area and outstanding efficiency enable them to generate output signals with a large dynamic range without the need for amplification. Here we have experimentally demonstrated the feasibility of using perovskite solar cells for capturing ONN output states, as well as the capability of single-layer random ONNs to achieve excellent performance even with a very limited number of pixels. Our results show that the solar-cell-based ONN setup consistently outperforms the same setup with CCD cameras of the same resolution. These findings highlight the potential of solar-cell-based ONNs as an ideal choice for automated and battery-free edge-computing applications.

https://doi.org/10.1364/PRJ.542564