The use of geometrical constraints exposes many new perspectives in photonics and in fundamental studies of nonlinear waves. By implementing surface structures in vertical cavity surface emitting lasers as manifolds for curved space, we experimentally study the impacts of geometrical constraints on nonlinear wave localization. We observe localized waves pinned to the maximal curvature in an elliptical-ring, and confirm the reduction in the localization length of waves by measuring near and far field patterns, as well as the corresponding energy-angle dispersion relation. Theoretically, analyses based on a dissipative model with a parabola curve give good agreement remarkably to experimental measurement on the reduction in the localization length. The introduction of curved geometry allows to control and design lasing modes in the nonlinear regime.
Kou-Bin Hong, Chun-Yan Lin, Tsu-Chi Chang, Wei-Hsuan Liang, Ying-Yu Lai, Chien-Ming Wu, You-Lin Chuang, Tien-Chang Lu, Claudio Conti, and Ray-Kuang Lee in Optics Express 25, 29068 (2017)