Spin-orbit algebra with graphene

Laser & photonic reviews published the paper by Ciattoni et al. on the spin orbit coupling in graphene (arXiv version). The coupling of 2D electrons with OAM and Spin allows to control the state of nano-scale light beams, and is potentially useful for multilevel quantum gates.

Nonlinear transmission matrix of random optical media

Random media with tailored optical properties are attracting burgeoning interest for applications in imaging, biophysics, energy, nanomedicine, spectroscopy, cryptography and telecommunications.
A key paradigm for devices based on this class of materials is the transmission matrix, the tensorial link between the input and the output signals, that describes in full their optical behavior. The transmission matrix has specific statistical properties, as the existence of lossless channels, that can be used to transmit information, and are determined by the disorder distribution. In nonlinear materials, these channels may be modulated and the transmission matrix tuned accordingly. Here we
report the direct measurement of the nonlinear transmission matrix of complex materials, exploiting the strong optothermal nonlinearity of scattering Silica Aerogel (SA). We show that the dephasing effects due to nonlinearity are both controllable and reversible, opening the road to applications based on the nonlinear response of random media.

A. Fleming, C. Conti, A. Di Falco, arXiv:1809.07077

Accelerated electrons go farther if out-of-equilibrium


We explore the nonlinear response of plasmonic materials driven by ultrashort pulses of electromagnetic radiation with temporal duration of few femtoseconds and high peak intensity. By developing the Fokker-Planck-Landau theory of electron collisions, we solve analytically the collisional integral and derive a novel set of hydrodynamical equations accounting for plasma dynamics at ultrashort time scales. While in the limit of small light intensities we recover the well established Drude model of plasmas, in the high intensity limit we observe nonlinear quenching of collision-induced damping leading to absorption saturation. Our results provide a general background to understand electron dynamics in plasmonic materials with promising photonic applications in the manipulation of plasma waves with reduced absorption at the femtosecond time scale.

Andrea Marini, Alessandro Ciattoni, and Claudio Conti, Collision quenching in the ultrafast dynamics of plasmonic materials in ArXiv:1808.03669