Direct Observation of Topological Protected Edge States in Slow-Light

We use split-ring resonators to demonstrate topologically protected edge states in the Su-Schieffer-Heeger model experimentally, but in a slow-light wave with the group velocity down to ∼0.1 of light speed in free space. A meta-material formed by an array of complementary split-ring resonators with controllable hopping strength enables the direct observation in transmission and reflection of non-trivial topology eigenstates, including a negative phase velocity regime. By rotating the texture orientation of the diatomic resonators, we can explore all the band structures and unveil the onset of the trivial and non-trivial protected eigenmodes at GHz frequencies, even in the presence of non-negligible loss. Our system realizes a fully tunable and controllable artificial optical system to study the interplay between topology and slow-light towards applications in quantum technologies