Simulating general relativity and non-commutative geometry by nonparaxial quantum fluids

We show that quantum fluids enable experimental analogs of relativistic orbital precession in the presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the Schroedinger equation. The non-commutating variables in the phase-space produce a precession and an acceleration of the orbital motion. The precession of the orbit is formally identical to the famous orbital precession of the perihelion of Mercury used by Einstein to validate the corrections of general relativity to Newton’s theory. In our case, the corrections are due to the modified uncertainty principle. The results may enable novel relativistic analogs in the laboratory, also including sub Planckian phenomenology.

https://iopscience.iop.org/article/10.1088/1367-2630/ab5da8

Couplings between time and orbital angular momentum in propagation-invariant ultrafast vortices

In any form of wave propagation, strong spatiotemporal coupling appears when non-elementary, three-dimensional wave-packets are composed by superimposing pure plane waves, or spontaneously generated by light-matter interaction and nonlinear processes. Ultrashort pulses with orbital angular momentum (OAM), or ultrashort vortices, furnish a critical paradigm in which the analysis of the spatiotemporal coupling in the form of temporal-OAM coupling can be carried out accurately by analytical tools. By generalizing and unifying previously reported results, we show that universal and spatially heterogeneous space-time correlations occur in propagation-invariant temporal pulses carrying OAM. In regions with high intensity, the pulse duration has a lower bound fixed by the topological charge of the vortex and such that the duration must increase with the topological charge. In regions with low intensity in the vicinity of the vortex, a large blue-shift of the carrier oscillations and an increase of the number of them is predicted for strongly twisted beams. We think that these very general findings highlight the existence of a structural coupling between space and time, which is relevant at low photon numbers in quantum optics, and also in the highly nonlinear process as the high-harmonics generated with twisted beams. These results have also applications as multi-level classical and quantum free-space or satellite, communications, spectroscopy, and high-harmonic generation.

Miguel A. Porras and C. Conti in arXiv:1911.1222

Controlling rogue waves and soliton gases

Topological control of extreme waves

From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, transitions between extreme waves are allowed. However, these have never been experimentally observed because control strategies are still missing. We introduce the new concept of topological control based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions through Riemann theta functions. We demonstrate the concept experimentally by reporting observations of supervised transitions between waves with different genera. Considering the box problem in a focusing photorefractive medium, we tailor the time-dependent nonlinearity and dispersion to explore each region in the state diagram of the nonlinear wave propagation. Our result is the first realization of topological control of nonlinear waves. This new technique casts light on shock and rogue waves generation and can be extended to other nonlinear phenomena.

Nature Communications volume 10, Article number: 5090 (2019)