The Game of Light

In memoriam: John Horton Conway

In 1970 an article by Martin Gardner appeared in Scientific American disclosing for the first time a “game” invented by John H. Conway: a matrix of ones and zeros changes with time according to simple rules inspired by biology. Cells (ones) survive or die because of overpopulation, or starvation. The simple rules surprisingly generate a variety of binary animals, named gliders, blocks, and spaceships, among others. By pen and paper, Conway demonstrated that complex dynamics spontaneously emerge in the game. Ultimately, Conway’s Game of Life turned out to be a universal Turing machine, and it is the most famous example of Cellular Automaton.

I was deeply inspired by the possibility of generating complexity with simple rules, like many others before me. In more than 50 years, Conway’s Game of Life inspired generations of scientists. “Life” is at the inner core of ideas that pervade nowadays machine learning, evolutionary biology, quantum computing, and many other fields. It also connects to the work of Wolfram and the development of Mathematica.

I was intrigued by the interaction between light and complexity and I wanted to combine the Game of Life with electromagnetic fields. I report below my original post on the topic (dating back to 2008). The article was rejected by many journals and finally published in a book dedicated to the 50 years of the GOL ( Game of Life Cellular Automata, Springer 2010).

The Enlightened Game of Life (EGOL)

The link between light and the development of complex behavior is as subtle as evident. Examples include the moonlight triggered mass spawning of hard corals in the Great Barrier, or the light-switch hypothesis in evolutionary biology, which ascribes the Cambrian explosion of biodiversity to the development of vision. Electromagnetic (EM) radiation drastically alters complex systems, from physics (e.g., climate changes) to biology (e.g., structural colors or bioluminescence). So far the emphasis has been given to bio-physical, or digital, models of the evolution of the eye with the aim of understanding the environmental influence on highly specialized organs. In this manuscript, we consider the way the appearance of photosensitivity affects the dynamics, the emergent properties and the self-organization of a community of interacting agents, specifically, of cellular automata (CA).

Quick and dirty implementation of the EGOL in a Python Notebook

https://github.com/nonlinearxwaves/gameoflife.git