Topology into the Ring: new fibers and resonators

Topological photonic crystal fibers and ring resonators

We study photonic crystal fibers and ring resonators with topological features induced by Aubry- Andre-Harper modulations of the cladding. We find non-trivial gaps and edge states at the interface between regions with different Chern numbers. We calculate the field profile and eigenvalue dispersion by an exact recursive approach. Compared with conventional circular resonators and fibers, the proposed structure features topological protection and hence robustness against symmetry-preserving local perturbations that do not close the gap. These topological photonic crystal fibers sustain strong field localization and energy concentration at a given radial distance. As topological light guiding and trapping devices, they may bring about many opportunities for both fundamentals and applications unachievable with conventional optical devices.

Laura Pilozzi, Daniel Leykam, Zhigang Chen, Claudio Conti in ArXiv:1909.02081

See also

Topological inverse problem by machine learning

Topological cascade laser